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CHAPTER 1 INTRODUCTION

The final goal of a high-throughput biology experiment is the effective translation of large

amounts of data into knowledge of biological phenomena. In the past two decades, since the

introduction of the first full genome screening techniques, there has been a steady effort to

bridge the gap between the constantly growing volume of experimental data and the ability

of researchers to derive precise and accurate information from it. In many cases, the data

to be analyzed comes from the comparison between two phenotypes. In such cases, the

expression level of each gene is compared between these two phenotypes, and the data takes

the form of a list of genes along with their measured differential expression value, i.e. the

ratio between the expression values of each gene in the two phenotypes, and, in most cases,

a p-value expressing the likelihood of obtaining such differential expression value, or a more

extreme one, just by chance.

Recently, a new type of information has gained popularity: signaling pathways describe

the complex signal transduction mechanisms in which genes and gene products are involved,

and that carry out specific cell functions. Pathways are represented as systems composed

by biological entities, and these systems are parts of a larger, more complex system (i.e. the

organism). The information about signaling pathways is provided by a number of repositories

that gather information from many experiments whose aim is to discover how genes interact

with each other to carry out biological processes.

When this information became available, pathway analysis methods were developed to use

this new knowledge to interpret the deluge of biological data and to obtain insights into bio-

logical phenomena of interest. These methods are used for several purposes, from phenotype

detection, e.g. when a pathway describes a particular condition, to mechanism discovery,

when the biological processes underlying the condition in analysis are not known. This last

aspect is particularly useful in the field of drug development, when accurate knowledge of

the mechanisms of action of a certain disease increase the chances of finding the appropri-

ate treatment, and pathway-specific therapy is emerging as a more effective alternative to
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single-gene therapy.

Complex diseases like cancer, for example, are the result of a multitude of different biolog-

ical processes happening at system level, and only a system level analysis can give a complete

overview of the whole disease. A notable example is the PTEN-PI3K-AKT pathway, known

to be a mediator of signaling phenomena in a number of cancer types, and different ac-

tivity in various parts of the pathway are linked to different prognoses [56]. In particular,

anomalies in the activity of this pathway can lead to metastasis and poor prognosis in several

types of cancer [95], and testing for such anomalies can help to identify those patients that

might need a more aggressive line of treatment. There are, however, some issues with the

current approaches to pathway analysis. The base concept of systems biology is that genes

are not independent entities, but interact with each other to carry out specific biological

processes. These biological processes are not independent, but they interact with each other

through signaling and through sharing of sub-processes. In the case of the PTEN-PI3K-AKT

pathway this is a well known issue [19], i.e. the crosstalk of the PI3K pathway, due to the

overlap among this pathway and pathways related to other diseases. For example, the PI3K

gene itself, central to the pathway, belongs to 70 pathways, many of which are unrelated to

cancer processes, such as Non-alcoholic fatty liver disease or Amoebiasis. The PTEN gene,

which negatively regulates the PI3K cascade, belongs to 16 pathways, among which there is

Hepatitis B. Finally, the AKT gene, just a step downstream the PI3K gene, is present in 65

pathways, including the Insulin signaling pathway.

Unfortunately, existing pathway analysis methods do not take into account such phe-

nomenon, and they consider all the genes as acting independently in each pathway they

belong to, analyzing pathways as independent entities separated from each other. These

issues lead to two important limitations of pathway analysis approaches that this thesis aims

to solve.

First, existing pathway analysis methods assume that all genes are equally important in

the biological processes they are involved in. However if, for example, many genes of the
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same family perform the same biological function, it is intuitive to think that if only one of

such genes is not active, this inactivity would not have a dramatic effect on the biological

function performed by the gene family, i.e. the single gene activity level is somewhat less

important than the one of a gene that, for example, is the only gene upstream of a cascade

of signaling events, without whose activity the given biological function is not carried out.

In order to overcome this limitation of existing pathway analysis methods, we developed an

evolutionary computation approach for determining the different contribution that

individual genes make to the phenomenon of interest, and including this information in

the analysis. This is the first available approach for the systematic estimation of gene weights

to be used in the analysis of signaling pathways. In addition, this method solves another

issue related to pathway analysis methods. Most methods need the user to set a number of

parameters in order to perform the analysis. These parameters are often set based on trial

and error on a small number of case studies, or, in some cases, simulated data. Instead,

the framework developed here can be used to estimate any parameter of pathway analysis

methods.

The second limitation of existing pathway analysis methods is related to how they deal

with the different roles that each gene has in the pathways it belongs to. These pathways

describe very different biological processes, often mutually exclusive, and in some cases pro-

cesses that happen in different tissues. From the biological perspective it is intuitive to think

that a gene, in a specific condition, will be involved with some biological process (pathway)

more than with others. In a specific condition, for example, the PTEN gene in the above

example will be involved more with some of the 16 pathways it belongs to, and less with

others. Existing methods completely ignore this fact, and assume that all genes make the

same contribution in all the pathways they belong to, and the consequence is that when such

crosstalk effect is predominant, the results of pathway analysis methods are riddled with

both false positives and false negatives. In the second part of this thesis we developed the

first method able to overcome this limitation of pathway analysis methods, by i) identifying
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such crosstalk effects, and ii) correct for it. This work is the first work that objectively

analyzes the effects of pathway crosstalk on the results of pathway analysis methods. We

show that the three major categories of pathway analysis methods are severely influenced by

these effects, and that this phenomenon is related to the structure of the pathways. The cor-

rection of crosstalk effects leads to a more meaningful ranking among pathways in a specific

condition, removing both false positives and false negatives due to crosstalk from the results.

Lastly, the method is able to identify novel functional modules that can play an indepen-

dent role, and have different functions, than the pathways they are located on, allowing a

better understanding of individual experiment results, as well as allowing for a more refined

definition of existing signaling pathways that is bound to a given phenotype.
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CHAPTER 2 PATHWAY ANALYSIS

The purpose of pathway analysis methods is to translate the lists of genes and differential

expression values coming from high-throughput experiments into knowledge of the biological

phenomena underlying the phenotypes in analysis, in the context of the systems described by

signaling pathways. Many methods achieve this result by identifying the signaling pathways

that are mostly impacted in a given experimental condition, calculating a p-value that aims

to quantify the statistical significance of the impact of each pathway in the experimental

condition.

From this description of pathway analysis, it is easy to define the three aspects that

constitute it: the input data, the analysis method, and the pathways.

The data is probably the simplest aspect: a common input for pathway analysis methods

is a list of genes together with their measured activity, or expression level in two phenotypes,

e.g. disease and normal. Some methods require genes to be labeled as differentially expressed

(DE) if the expression levels are different between the two phenotypes. A p-value is assigned

to each gene, assessing the statistical significance of the difference in expression values. The

input to pathway analysis methods differs between methods. In its simplest form is just the

list of genes and the DE/Non-DE label for each gene. Other methods accept as an input the

measured difference, while other methods accept both measured difference and statistical

significance.

From the description of pathway analysis provided above, it is clear that the pathways

themselves represent a fundamental aspect contributing to the results of the analysis. For

this reason, this chapter is divided in two parts. The first part presents the fundamental

concepts that are at the base of the description and representation of signaling pathways,

and the consequences that different representations have on existing analysis methods. The

second part presents an overview of the available approaches for pathway analysis.
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2.1 Curated databases of biological pathways

After the introduction of high-throughput technologies researchers started facing the key

challenge in functional genomics: once data for tens of thousands of genes was retrieved, the

focus shifts to the interpretation of such data. One of the first resources whose goal was

to facilitate the interpretation of high-throughput data was the Gene Ontology (GO) [5].

The GO represents a collection of three ontologies that aim to describe how various terms,

representing biological processes, molecular functions, and cellular components are related

with each other. Terms in GO are organized in a hierarchical tree structure, and they are

ordered from the most generic term to the most specific. Each ontology in GO takes its

name from the most generic term in the tree. Genes and proteins are annotated with one

or more terms, indicating that they are involved with that particular entity (e.g. involved

in a particular biological process or molecular function, or they are found to be related to

a certain cellular component). In the context of signaling pathway, the gene ontology (and

more specifically, the Biological Process ontology) contains a particular term, the signal

transduction term. Children of this term are terms describing signaling pathways, and genes

associated with these terms are genes that are known to be involved in a specific signaling

pathway. One first negative aspect of such basic description is that a signaling pathway is

represented as a set of genes that, in some non-specified way, interact with each other to

carry out the process described by the specific signaling pathway. For example, the genes

associated with the signaling pathway Intrinsic apoptotic signaling pathway are known to be

involved in apoptosis (programmed cell death) but no information is given about how these

genes interact in the process.

More recently there have been several initiatives aimed to fill this lack of advanced in-

formation on signaling pathways. Pathway databases such as KEGG [60], BioCarta [12],

DC-Atlas [20], and Reactome [26] describe signaling pathways not only as mere gene sets,

but they include the knowledge about the interactions among the genes, with the type of in-

formation provided depends on the specific pathway database. Another difference among the
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database is how pathways are described. For example, the KEGG database uses the KEGG

Markup Language (KGML), a proprietary language based on XML, Reactome is based on

the BioPAX language and the DC-Atlas database uses BCML [8], while other databases de-

scribe their pathways in the Simple Interaction Format (SIF), a language that is only able to

describe if an interaction exists among two genes, without providing any other information

such as direction or type of interaction. Although the language used in the description of

pathways seems to be a trivial factor in the context of the analysis of signaling pathways, it

plays an important role in determining the type of analysis that can be performed. For ex-

ample, a pathway database describing pathways in SIF might allow only elementary types of

analysis, while adding other types of information such as type of interaction, or direction, or

weight of an interaction allows for more refined analyses. This is why the next sections, which

describes three widely used pathway databases, places particular focus on the versatility of

the description language towards its use in computational methods.

2.1.1 The Kyoto Encyclopedia of Genes and Genomes - KEGG

Since it was introduced in 1995, the Kyoto Encyclopedia of Genes and Genomes (KEGG)

provides information on a variety of biological entities. KEGG is composed by 17 databases

related to various biological entities such as genes, genomes, compounds, diseases, drug, path-

ways, etc. These databases are divided in four categories: Systems Information, Genomic

Information, Chemical Information, and Health Information. The KEGG Pathway database

contains information about molecular networks, representing systems present in cells and

organisms. The knowledge on interaction comes from both manual and automated curation

of experimental knowledge. The pathway database contains information about two types of

pathways: metabolic pathways and signaling pathways. The difference between these two

types of pathways is that in metabolic pathways nodes represent compound and enzymes,

and edges represent biochemical reactions, while in signaling pathways nodes represent genes

or gene products, and edges represent signals passed from one node to another. Signaling

pathways in KEGG describe how genes and gene products interact together to carry out a
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Figure 2.1: The VEGF signaling pathway in KEGG. This pathway describes the process through which
vascular endothelial growth factor triggers events leading to proliferation and migration of endothelial cells.
Genes (or gene families) and gene products are represented by the green nodes, while the interactions among
them are represented by the arrows connecting the nodes. Different types of edges represent different types
of reactions. For example, the two leftmost nodes in the pathway indicate that the VEGF protein (node with
label VEGF) activates the VEGF receptor (node with label VEGFR2). Figure 2.2 describes the meaning of
the various types of edges.

particular biological process. Figure 2.1 shows an example of a KEGG signaling pathway,

the Vascular Endothelial Growth Factor (VEGF) signaling pathway. This pathway describes

the process through which vascular endothelial growth factor triggers events leading to pro-

liferation and migration of endothelial cells. Genes (or gene families) and gene products are

represented by the green nodes, while the interactions among them are represented by the

arrows connecting the nodes. Different types of edges represent different types of reactions.

For example, the two leftmost nodes in the pathway indicate that the VEGF protein (node

with label VEGF) activates the VEGF receptor (node with label VEGFR2). Figure 2.2

describes the meaning of the various types of edges.

For each process described by a pathway, KEGG defines a reference pathway, and each

different organism in KEGG has its own specific pathway object derived from the reference
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Figure 2.2: Various types of nodes and edges representing different entities and types of interactions in a
KEGG pathway.

pathway. For example, from the reference Apoptosis pathway, a specific pathway for Homo

Sapiens (human) is generated, then another for Mus Musculus (mouse), and so on. The

main issue with this strategy is that, when a reference pathway is modified due to new

knowledge, another manual process has to be performed to adapt all the organism-specific

pathways. Retrieving pathway information from KEGG is possible through a number of

options. The most convenient is through their REST server via the KEGGREST package

from the Bioconductor repository for R [38, 94].

2.1.2 Reactome

Reactome is a free, open-source curated pathway database resulting from the collaboration

from the Ontario Institute for Cancer Research, Cold Spring Harbor Laboratory, New York

University Medical Center and the European Bioinformatics Institute.

The Reactome database collects information for more than 1,000 peer-reviewed, expert-

curated pathways that include metabolic and signaling pathways. Pathways are represented,

when appropriate, in a hierarchical fashion not dissimilar to GO. For example, the Apoptosis
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group of pathways includes four interconnected pathways. One of them, Intrinsic Pathway

for Apoptosis, is formed by other sub-pathways, and so on until we reach the specific reactions

that act together to carry out that particular process.

Although the basic concept is the same as KEGG, i.e. making pathway maps available

through a centralized system, the Reactome database presents several unique advantages over

KEGG. While KEGG restricts some uses to paid customers only, the Reactome database is

completely free. Furthermore, Reactome is dynamically connected to many external sources

of information such as BioGRID [103], ChEMBL [122], or MINT [21], and the very same

KEGG, de facto extending enormously the amount of information available. This flexibility

allows Reactome to rely, with little effort, on the most advanced knowledge bases of biolog-

ical information. Another strong point of Reactome is the visualization aspect. Reactome

pathways graphs are automatically generated, and users can download them and visualize

them with free visualization softwares (e.g. Cytoscape [98]).

Analysis of Reactome pathways is possible directly from the website. Users can upload

their list of genes, proteins, or small molecules and perform over-representation analysis on

the specified pathways. The last important aspect of the Reactome database is the fact that

pathways can be exported in the BioPAX format. This is important since BioPAX is the

most widely used format for the exchange of information on biochemical interactions (see

Sec. 2.2 for details).

An example of a Reactome pathway can be seen in the left panel of Figure 2.3, while

the right panel of Figure 2.3 shows the meaning of the graphical elements in a Reactome

pathway.

2.1.3 DC-Atlas

DC-Atlas is a publicly available database that integrates the efforts of 32 European re-

search groups providing information on pathways involved in dendritic cells functions. This

approach departs from Reactome and KEGG approach. Whereas these two database pro-

vide a generic representation of a signaling pathway, disregarding differences in tissue type,
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Figure 2.3: Left: detail of the Intrinsic Pathway for Apoptosis in the Reactome database. This panel shows
an example of the visualization of a pathway in the Reactome database. Similarly to the visualization in
KEGG, nodes represent gene products or other biochemical entities, and edges represent interactions among
them. The Reactome on-line visualization tool is much more advanced than the one found on the KEGG
website, as it allows for analysis and visualization of publications related to the pathway in analysis. Right:
Reactome legend. Various types of nodes and edges representing different entities and types of interactions
in a Reactome pathway.

DC-Atlas focuses on a specific type of cell, resulting in a very accurate description of each

network. The rationale behind this approach is that biological processes in cell types can

be dramatically different, and therefore analysis performed on general pathways will not be

able to capture tissue specific effects, yielding sub-optimal results.

Dendritic cells are specialized cells of the immune system that are involved in many aspects

of the immune response of an organism. Their involvement in a number of diseases such as

HIV, many types of cancer and autoimmune diseases makes dendritic cells a key focus for

the understanding of how such diseases work.

Pathways in DC-Atlas are annotated using the BCML format, one of the most advanced

format for the description of biochemical pathways. It is important to note that pathways

in the BCML atlas also follow the SBGN specification (described in Sec. 2.2).

One interesting aspect of the DC-Atlas database is the modular structure with which the

pathways are described. In each pathway, cascades downstream a receptor are divided in

three types of modules, each module interconnected sequentially with the others. These types
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Figure 2.4: DC-Atlas: representation of the TLR3 pathway. The different color represent different signal
cascades. This pathway presents one Receptor/Sensing module (R/S, yellow) spans the endosome and the
cytosol. Three transduction modules (T1 - transduction 1 - light yellow, T2 - transduction 2 - orange, T3
- transduction 3 - light blue) connect to three outcome modules (O1- light yellow, O2 - orange, O3 - light
blue). The T2 module is partly in the endosome. All the outcome modules are located in the nucleus.

of modules are the receptor and sensing, containing components of the pathway that interact

with the stimulus and pass the appropriate signal to the second module, the transduction

module. This module contains the components that carry the signal to the nucleus. The

third module is the outcome module, beginning with a transcription factor and representing

the final effect that the initiating signal has on the pathway. DC-Atlas pathways also specify

the cellular region in which a reaction happens.

Figure 2.4 shows the representation of the Toll Like Receptor 3 (TLR3) pathway in

DC-Atlas. The different color represent different signal cascades. This pathway presents

one Receptor/Sensing module (R/S, yellow) spans the endosome and the cytosol. Three

transduction modules (T1- light yellow, T2 - orange, T3 - light blue) connect to three outcome

modules (O1- light yellow, O2 - orange, O3 - light blue). The T2 module is partly in the

endosome. All the outcome modules are located in the nucleus.

The retrieval of pathway information from DC-Atlas is possible through a suite of tools

provided by the maintainer of the project. Due to the compatibility with SBGN, pathways

retrieved from DC-Atlas benefit from numerous applications available for the visualization,
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manipulation, and analysis of SBGN compliant networks (see http://www.sbgn.org/SBGN_

Software for an up-to-date list of software).

2.2 Languages for the description of signaling pathways

2.2.1 KGML

In addition to the graphical representation, pathways in KEGG are described in the

KEGG Markup Language (KGML). KGML is an XML-based format developed by KEGG.

The images of pathways that are found on the KEGG website are not, however, obtained

directly from the KGML file describing each pathway. This means that an inefficient and

tedious manual process of translation from KGML to image is necessary, with potential

discrepancies between them. In addition, this level of decoupling makes it necessary to

manually update the images every time the KGML file is updated. Despite the versatility of

the XML format from which KGML is derived, this usefulness of this format is limited to the

simple description of the relationship among gene products, and any additional information

has to be added out of the standard. For example, should a researcher desire to show how

the genes in the pathway react to a certain experiment, by mapping gene expression levels

on the pathway, she would have to manually add that capability in the schema.

2.2.2 BioPAX

The Biological Pathway Exchange language (BioPAX) [28] is the result of an international

collaborative effort aimed to provide a standard for integration, description and visualization

of biological pathway data. BioPAX relies on RDF/OWL, therefore it benefits from all the

characteristics that make OWL an excellent choice for the representation of knowledge.

BioPAX versioning is described by “levels”. The current version is BioPAX Level 3.

Each level adds functionalities to the previous level. In addition, extensions are available

for each particular level, adding features that are often in the process of being included

in the successive level. Level 3 was the first level where signaling pathways were officially

introduced.

BioPAX level 4, currently in development, will include support for Semantic Web tech-

http://www.sbgn.org/SBGN_Software
http://www.sbgn.org/SBGN_Software
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nologies as an effort to facilitate seamless integration among knowledge bases.

The main advantage of BioPAX is the wide availability of tools for manipulation and visu-

alization of pathways, as well as the wide adoption of the format. Pathway databases offering

BioPAX export include Reactome, BioCyc [1], WikiPathways [61], Pathway Commons [22],

and Panther [111, 79].

Many tools are available for visualization, manipulation, and analysis of BioPAX path-

ways, including Paxtools. Paxtools is a Java library developed by the same group behind

BioPAX, ensuring high compatibility with the language, and guaranteeing efficient, complete,

and consistent access to all the resources made available by BioPAX.

Although it is the most widely used format for describing biological pathways, BioPAX has

an important limitation that stands in the fact that it is mainly oriented towards consultation

of the information contained in pathways. The types of analysis that are available for BioPAX

pathways are, to this date, only basic, since most of the groups involved in its development

are focused on the biological aspects of the description of a pathway, and mostly oblivious to

advanced methods for the analysis of signaling pathways. The other limitation of BioPAX is

linked to the size of its governance group, size that results in a sort of inertia towards changes.

A clear example is the planned introduction of compatibility with semantic web technologies:

although the usefulness of linked data capabilities is clear, and although BioPAX is already

described in RDF, talks regarding this change have started as far back as 2008, with little

progress so far.

2.2.3 Graphical notation of pathways: the Systems Biology Graphical Nota-

tion

The Systems Biology Graphical Notation is a standard for the graphical representa-

tion of biochemical pathways. Similarly to BioPAX, it has been crafted by a community

of researchers (often overlapping with the BioPAX community) over the course of several

years.

SBGN is not formally a language for the description of biochemical pathways, as much
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Figure 2.5: SBGN Process Description diagram for the example network. This language describes a biological
network in terms of the temporal steps that reactions and interactions follow to carry out the desired function.

as a format for the graphical representation as the name states. However, it is possible to

exploit the clarity of SBGN networks for pathway analysis purposes, and this is why it is

included here.

SBGN is divided in three languages for describing different aspects of biological network:

the Process Description language (PD) describes a biological network in terms of the tem-

poral steps that reactions and interactions follow to carry out the desired function. This

type of description can be used if the purpose of the analysis is to capture time dependent

phenomena, such as in the case of time series gene expression experiments. Figure 2.5 shows

an example of an interaction described with PD. This interaction is of type activation, in

which the activator entity (e.g. a gene product) activates the “actor” entity. After the acti-

vation, the actor entity is presented as active. Then, the active actor binds with a co-factor,

resulting in a combined entity. The Readout state represents a point in time where the result

of the interaction can be screened.

The Entity Relationship (ER) language shows, as the name states, relationships among

entities, regardless by the temporal aspects of such relationships. Figure 2.6 shows the same

interaction shown in Figure 2.5, but this time described in ER. The arrows now represent

the fact that the entities have a relationship among them.

Finally, the Activity Flow (AF) diagram represent the transduction of activity (signals)

throughout the network. Figure 2.7 shows again the same reaction described above. In AF

the arrow between the activator and the actor defines the type of interaction (in this example
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Figure 2.6: SBGN Entity Relationship diagram for the example network. The arrows now represent the fact
that the entities have a relationship among them.

Figure 2.7: SBGN Activity Flow diagram for the example network. In this language the arrow between the
activator and the actor defines the type of interaction (in this example activation).

activation). This diagram is more similar to the description provided by KEGG.

2.3 The Biological Connection Markup Language

The languages described so far share an important limitation: none of them was designed

to be used with advanced methods for the analysis of signaling pathways. All these languages

have the purpose of providing pathways that can be use as a reference, not unlike a static

map that biologists can consult when in need to confirm results of some wet lab experiment,

or to draft preliminary experimental design. However, the recent development of methods

for the analysis of signaling pathways clashes against this shortcoming. This is why we

developed the Biological Connection Markup Language (BCML) [8]. BCML is defined

as a complete framework that allows all the aspects of signaling pathways, from the design,

to the manipulation, the integration with external data sources, to the analysis.

The analysis aspect, in particular, is where BCML distinguishes itself from existing so-

lutions. Rather than incorporating basic type of analyses, BCML allows the exporting of

pathways in a number of format compatible with the most advanced methods for the analysis

of signaling pathways, such as the SBGN Activity Flow diagram, or the Gene Matrix Text

(GMT).
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BCML is XML based, and in order to be SBGN compatible, it follows the complete SBGN

specification. In addition to the basic features, many additional features can be added to

BCML entities. In contrast, adding feature to any KEGG pathway results in a non-KGML

compatible object.

In addition to graphical components and elements of SBGN notation, BCML users can

embed additional information on the entities in the network, such as a set of identifiers for the

entity (e.g. Entrez Gene IDs or Uniprot Accession Numbers). Different species can be linked

to specific identifiers in the set. Probably the most innovative feature is the capability of

associating Findings, i.e. condition-specific information, to each entity. Findings represent

of biological information that has been found to be relevant to a specific entity, in a real

world experiment. The first version of BCML supports the following types of information:

organism, tissue, type of cell, biological environment in which the evidence was proven and

the type of the specific type of experiment from which the evidence was gathered. Users must

use a controlled vocabulary that has been developed from state-of-the-art medical ontologies.

This guarantees consistency between findings that are submitted by different users.

Another function provided by the schema is the possibility of splitting pathways into

independent units carrying out specific functions in a pathway. These units are called macro

modules.

Lastly, BCML goes beyond its main focus, i.e. biological data and analysis, by providing

support for advanced visualization of pathways. Users can personalize elements such as back-

ground, border, etc. The software suite that we developed is able to process these graphical

elements during parsing, with the consequence that users can assign specific meanings to

them.

It is important to note that the additions to SBGN are not mandatory: users can choose

to take advantage of the added features, or to just follow the plain SBGN specification. Also,

since BCML follows a layer structure, users can, at any time, obtain a fully SBGN compliant

description of a pathway without the additional features.



www.manaraa.com

18

2.3.1 BCML software suite

A software suite is available for BCML provides a series of tools that allow users to

properly describe, manipulate, and visualize pathways written in BCML. BCML files can

be validated through a validation tool, to make sure that the structure of the file follows

the BCML and SBGN criteria. First, the file is checked against XML specifications, and

after that for SBGN specifications, and elements that break any specification are reported.

Additionally, elements with duplicated identifiers are reported, as well as elements that are

disconnected from any other element in the network.

Graphical representation.

The BCML software suite allows for conversion of BCML files into a number of formats

that allow direct visualization. Since BCML files contain all the necessary information to

produce SBGN-compliant graphs, graphical output of BCML files is straightforward. The

default conversion is from BCML into GraphML, one of the widely used standards for the

representation of graphs. BCML files converted to GraphML can be opened by several free

software tools such as the yEd or Cytoscape and then successively exported in many other

formats.

Pathway analysis.

One of the main goals of BCML is to allow to use pathways with advanced methods

for pathway analysis. The tools provided with the software suite allow the extraction of

identifiers (genes) lists from a BCML file, allowing for their use with analysis methods such as

functional class scoring methods and over-representation methods. In addition to this basic

conversion, BCML overcomes one of the main limitations of existing formats by allowing

straightforward conversion to formats that are suitable for topological analysis of pathways.

This conversion takes into account of basic elements such as type of interaction, entities

involves, and advanced elements such as previous knowledge (through the experimental data

information stored along with each entity), allowing for a fine tuning of the parameters of

the analysis.
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BCML and the software suite are freely available and open source, available upon request

from http://dc-research.eu. An example of the graphical representation of a BCML

pathway can be seen in Figure 2.4.

2.4 Pathway analysis methods

The state of the art of methods for pathway analysis can be best understood from an

historical perspective. Before pathways were created to describe in detail complex biological

processes, the only available data was provided by the Gene Ontology (GO). As explained

in Sec. 2.1, in GO genes are associated with terms to known biological processes and cellular

component. When presented with a list of genes of interest, researchers would consult GO

through a tedious manual process to identify which terms were most likely to be associated

with the genes of interest. The first approach to automate this process was functional profil-

ing [31, 63]. Since most people are usually interested in the GO categories that are enriched

in DE genes, this approach has become known as over-representation analysis (ORA). An

alternative approach is the one followed by methods in the Functional Class Scoring cate-

gory. Methods belonging to this category do not rely on a selection of DE genes needed by

over-representation approaches. In addition, these methods take into account the correlations

among expression profiles of genes. The Gene Set Enrichment Analysis (GSEA) [83, 105, 112]

is the most widely used FCS approach. GSEA ranks all genes based on the correlation be-

tween their expression and the given phenotype, and calculates a score that reflects the

degree to which a given pathway is represented at the extremes of the ranked list.

When pathway databases started to become available, describing in detail the interactions

among genes, offered the potential for a more complex and useful analyses than the simple

enrichment. However, at the beginning the methods originally developed for GO analysis

were immediately used to analyze pathways. The extrapolation was very simple: consider a

pathway as merely the set of the genes that are involved in it (discarding the interactions),

and perform exactly the same analysis used for GO annotations. This was easy but, like

many easy solutions, not optimal, as it has been discussed in the literature [62, 64, 82]. The

http://dc-research.eu
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main limitations of these approaches when used to analyze pathways is that they treat the

pathways as simple sets of genes, ignoring the very reason for their existence: the description

of the complex interactions between their genes. More recently, an impact analysis [30, 108]

has been proposed as approach that manages to take into consideration biologically important

factors previously neglected by most existing pathway analysis tools. This approach has

subsequently evolved into a category of topology-based methods (See [82] for a comprehensive

list).

In this section we will briefly describe the two categories of pathway analysis methods,

from the simplest analysis methods that consider pathways only as gene sets, to the most

advanced methods that include other types of information such as the topology of each

pathway and information on the differential expression of individual genes.

2.4.1 Gene set based analysis methods

Gene set based analysis methods belong to that category of methods that do not include

topological information in the analysis. This approach does not assume the existence of

any knowledge regarding the underlying interactions among genes, considering pathways as

simple sets of genes. Most of the methods belonging to this category were originally developed

for the Gene Ontology, where terms are indeed gene sets. Once pathway databases started

providing pathway information, the same methods were borrowed for pathway analysis. The

most widely used strategy for analyzing gene sets is enrichment analysis. This strategy

involves determining if a gene set is enriched in genes of interest, where the definition of“gene

of interest”varies based on the specific method. In most cases, a p-value is computed to assess

the probability that the observed enrichment can be obtained by chance alone. An extensive

review of enrichment methods [54] listed almost 70 existing available methods.

Over-representation analysis

Arguably the most common method for enrichment analysis is the over-representation

analysis. This method was first introduced in 2002 for the functional analysis of GO [31, 63].

In this context, the input is a list of genes marked as differentially express (DE) or non
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differentially expressed (NDE) based on their expression levels in a certain condition. In

the case of phenotype comparisons, this is determined based on the difference in expression

values for each gene in the phenotypes in analysis. A p-value is computed, expressing the

probability of obtaining a difference equal or greater than what is observed. If this p-value

is smaller than a certain arbitrary threshold, the gene is considered as DE, otherwise it is

considered NDE. Methods for determining such p-value include t-test, fitting of linear models,

ANOVA, etc. Each GO term is analyzed to determine if it is either over-represented (more

DE genes than expected just by chance) or under-represented (less DE genes than expected

just by chance) in the condition under study. This method was immediately used to analyze

pathways with the same approach: if a pathway contained more DE genes than expected

by chance, then it was considered involved in the condition in analysis. The hypergeometric

model is one of the most commonly used methods for determining statistical significance of

the observed over- or under-representation. This model computes a p-value that represents

the probability of obtaining a number of DE genes in a pathway more extreme than the one

observed, taking into account the total number of DE genes an the total number of genes

screened. Assuming that N genes are screened, that K genes are found to be DE, that KP

genes are found to be DE in pathway P , and that pathway P has size NP genes in total, the

probability of obtaining exactly Kp DE genes can be computed as in Eq. 2.1.

P (X = KP |N,NP , K) =

(
NP
KP

)
·
(
N−NP
K−KP

)(
N
K

) (2.1)

The probability of obtaining a number of genes equal or higher than the observed value

KP can be obtained with Eq. 2.2.

P (X ≥ KP ) = 1−
KP−1∑
i=0

(
Np
i

)
·
(
N−Np
K−i

)(
N
K

) (2.2)

The hypergeometric p-value computed for each pathway is used to rank them, and it is

interpreted as the amount of involvement of each pathway in the phenomenon that generated
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the specific list of DE genes.

Currently, more than 40 tools using this or similar approaches are available, and an

extensive survey can be found in [64].

Functional class scoring

The over-representation approach described in the previous section uses the simplest pos-

sible type of information available for pathways and for experimental data, i.e. pathway

membership of each gene and the information regarding the differential expression of each

gene (DE or not), respectively. This second type of information is based on an a priori selec-

tion of interesting genes: the list of genes is ranked based on some quantitative measure, e.g.

fold change or p-value coming from the comparison of two phenotypes, and the list is cut-off

at a certain point. For example, a commonly used such cut is performed choosing genes

with p-value smaller than 0.05 (after correction for multiple comparisons) and the logarithm

in base 2 of its fold change greater than 1. This cut-off dependency represents one of the

biggest limitations of over-representation approaches, making them sensitive to the change

of the cut-off parameters.

Functional class scoring approaches overcome this limitation by computing the association

between pathways and phenotypes using all the genes measurements available.

Arguably the most widely used method in this category is the Gene Set Enrichment

Analysis (GSEA) [83, 105]. GSEA first ranks all genes based on a measure expressing

the correlation between the gene expression of each gene and the phenotypes in analysis,

obtaining a ranked gene list L. The measure used can be as simple as the fold change between

two phenotypes, or be more sophisticated, such as the moderated t-statistic [101].

Then, an enrichment score (ES) is computed, reflecting the degree to which a gene set

S is represented at the top or at the bottom of the list L. The hypothesis is that if the

set S is not associated with the phenomenon, then the genes that belong to it will not be

concentrated either at the top or at the bottom of L. If the set is associated with the

phenomenon, then the genes belonging to S will be mostly at either extreme of the list.
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Figure 2.8: The GSEA method starts with a gene expression matrix where columns represents samples
coming from two phenotypes (P1 and P2 in panel A), and rows represent genes. The correlation of gene
expression values with the difference in phenotypes is computed, and an enrichment score is determined for
each gene set (panel C) using a Kolmogorov-Smirnov statistic.

Hence, ES is computed by walking down L and increasing a running-sum statistic whenever

a gene belonging to S is encountered, and decreasing it when a gene that does not belong

to S is found, with the increment being proportional to the measure used to quantify the

correlation of genes with the phenotype. An example of the running-sum statistic is shown

in panel C) of Figure 2.8.

The resulting ES is the maximum deviation from zero of the running-sum statistic, corre-

sponding to a weighted Kolmogorov-Smirnov-like statistic [51], and the genes contributing to

the maximum deviation are referred to the leading-edge subset, representing the core genes

contributing to the ES.

Statistical significance of the ES is estimated by a permutation based approach. The

phenotype labels are permuted many times and fold changes are computed each time. At

each iteration the ES of all pathways are computed, building the null distributions of ES for

each pathway. The observed ES is compared with the null distribution, obtaining a nominal

p-value by counting the number of times that randomly obtained ES scores are more extreme
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than the observed score. It is important to note that the null distribution can be obtained

by permuting phenotype labels as well as by permuting gene labels. The phenotype labels

permutation approach is the more common, since it preserves gene-gene correlations.

When a single set is analyzed, the ES and its corresponding p-value are used as-is. If

multiple sets are analyzed at the same time, each ES is normalized for each set by dividing

the raw ES by the size of the set, obtaining a normalized ES (NES). The p-value of each ES

is corrected for multiple comparisons by calculating the false discovery rate (FDR) [9, 10],

in order to reduce the number of false positives.

Several improvements over the basic GSEA algorithm have been proposed in the course of

the years. The two most notable are the modified GSEA proposed in [128] and [33]. The first

extends GSEA in a number of ways: first, by fitting multiple regression models to the data

in order to correlate gene expression to continuous covariates (e.g. age of the sample), and

ordering by a coefficient of interest. Second, it replaces the Kolmogorov-Smirnov statistic

with the van der Waerden statistic. This kind of statistic is chosen due to the properties

related to small set sizes. Third, the permutation approach is replaced by a bootstrap

approach [34].

The second notable modified GSEA approach takes the name of Gene Set Analysis (GSA).

This approach replaces the Kolmogorov-Smirnov statistic with a maxmean statistic showing

its greater statistical power, and introducing a re-standardization procedure on the data that

allows to take into account, during the calculation of the statistic for each gene set, of the

scores obtained by permutation of sample labels and of scores obtained by permutation of

gene labels at the same time.

2.4.2 Topology aware methods

The methods described in the previous section share an important limitation: they per-

form the analysis without exploiting information regarding the topology of the pathway. This

analysis paradigm disregards the fact that organisms are complex systems whose emerging

phenotypes are the result of thousands of complex interactions happening between genes lo-
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cated on various metabolic and signaling pathways. Topology aware methods, also referred

to as third generation pathway analysis methods [82, 64] go beyond simple gene set analysis

by incorporating topology information. In [82], we surveyed more than 20 methods that

incorporate topology into the analysis of signaling pathways from the point of view of input

data, mathematical models used, output format, and technical implementation details.

Most analysis methods accept as input either a list of gene identifiers, along with their

measured fold changes and, if present, a p-value expressing the statistical significance of such

fold changes. As in the case of gene-set based methods, some analysis methods rely on a

selection of differentially expressed genes, like the over-representation approach described in

the previous sections, based, in most cases, on an arbitrarily selected threshold either on the

fold change or the p-value, and in some cases, of both.

Regardless of the choice of using filtered lists or not, analysis methods can use either

the full information available, i.e. gene ID, fold change, and statistical significance, or any

combination of these factors. For example, the TopoGSA [40] method uses the DE/non-

DE label, scoring pathways based on the relative position of genes in each pathway. Other

methods use all the genes and their fold changes (e.g. PARADIGM [117]), while the most

recent implementation of the impact analysis [118] is able to incorporate all the three factors

in the analysis.

The mathematical models employed by the various methods are much more heterogeneous

than the ones used by ORA. Whereas ORA approaches rely mostly on Fisher’s exact test,

many different approaches are used by topology aware pathway analysis methods, from the

choice of graph analyzed (e.g. typed interactions, directed or undirected) to the method using

for assigning a score to the pathway representing the level of involvement in the phenotype

comparison (e.g. graph measures, Bayesian network analysis), to the choice of assigning

statistical significance to the score, and if so, what strategy (parametric or non-parametric)

to assign to the score.

Finally, the output reported by the methods presents a certain variability. Although the
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final result of a pathway analysis method is usually a list of pathways ranked by their involve-

ment with the condition in analysis, some methods provide more information. The impact

analysis provides information about the direction of the involvement, as well as information

regarding the presence of cascades of coherent perturbation propagation, i.e. paths in a path-

way where each node presents an expression changes coherent with the expression change of

the nodes upstream, weighted by the type of interaction. Other methods provide information

on sub-pathways that are deemed important in the phenomenon in analysis.

Impact Analysis

The impact analysis is the first pathway analysis method that incorporates the topology

of pathways into the analysis. This method aims to overcome the limitations of ORA and

FCS methods by integrating i) the number of DE genes in a pathway, ii) the fold change of

those genes, and iii) the interactions among those genes into an impact factor representing

how much the pathway in analysis is impacted in the condition in analysis. Eq. 2.3 shows

the original definition of the impact factor for a pathway P .

IF (P ) = log

(
1

p

)
+

∑
g∈P
|PF (g)|

|∆E| ·Nde(P )
(2.3)

The number of DE genes of a pathway is represented by a classical probabilistic term, such

as Fisher’s exact test, and it is captured by the first term of Eq. 2.3. The second term of this

equation is the term that takes into account the topology of the pathway. The numerator is

the sum of the perturbation factors (PFs) of the genes in the pathway, defined as follows for

a gene g:

PF (g) = ∆E(g) +
∑
u∈USg

βug ·
PF (u)

Nds(u)
(2.4)

The PF of each gene is composed by a first term, ∆E(g), representing the measured

change of the gene, and the summation term represents the effect that the genes upstream

of g have on the PF of g itself.
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Gene BGene A

activation

Figure 2.9: Example of interaction among genes. Gene A and gene B are linked by an interaction of type
activation, meaning that the product of gene A activates the product of gene B.

Particular importance goes to the term βug. This term is related to the type of interactions

that each gene u upstream of g has on g itself. Users of the impact analysis can choose the

value of β that best suits their knowledge on how a gene affects another gene when the two

are connected by a certain type of interaction. For example, gene A can be upstream of gene

B, and the type of interaction can be of type activation, as shown in Figure 2.9.

Default values for β have been determined by a panel of experts. For example, interactions

such as activation, expression, activation through phosphorylation are assigned by default a

value of β = 1, indicating that all the perturbation passes through those nodes with no

modulation, while interactions like repression or inhibition are assigned a value of β = −1,

indicating that the perturbation passing through those edges passes with reversed sign, i.e.

it has an inverse effect on the gene downstream. Lastly, in Equation 2.3, the denominator of

the second term is the average expression change of genes in the pathway, multiplied by the

number of DE genes in the pathway.

The impact factor IF obtained from Equation 2.3 follows a Γ(2, 1) distribution, and for

each pathway Pi a p-value p(Pi), expressing the probability of having, on Pi, both a number

of DE genes higher than what can be observed just by chance and a perturbation value larger

than what can be observed just by chance can be computed as p(Pi) = (if + 1) · e−if .

A second implementation of the impact analysis, presented in [107], involves the compu-

tation of a perturbation accumulation for a gene g with the formula in Equation 2.5.

Acc(g) = PF (g)−∆E(g) (2.5)



www.manaraa.com

28

In Equation 2.5, the term PF (g) is the perturbation factor as described in Equation 2.4.

Once the perturbation accumulation is computed for all the genes, a total accumulation

TAcc is computed for each pathway as sum of the Accumulation values for all the genes

in the pathway. A p-value pAcc expressing the probability of obtaining, just by chance, a

value of TAcc equal or more estreme than the observed value is computed with a resampling

approach.

Similarly to the first implementation of the impact analysis described above, a p-value for

each pathway Pi, combining classical over-representation analysis and the new perturbation

accumulation p-value, is computed as follows:

p(Pi) = pDE · pAcc · (1− ln(pDE · pAcc)) (2.6)
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CHAPTER 3 IMPROVEMENTS TO THE TOPOLOGICAL ANALYSIS OF
SIGNALING PATHWAYS

Although the impact analysis incorporates a number of factors that are crucial for the

analysis, such as the magnitude of the expression change for each gene, and the topology of

the pathway, it still presents an important limitation: the results are highly dependent to

the selection of DE genes used as input. This limitation has two important consequences.

First, once the set of DE genes is determined, the contribution of those genes is considered

proportional only to their values of differential expression, i.e. the expression fold change

between phenotypes in analysis, completely discarding the information on the statistical

significance that has already been computed for each gene. This implies that genes with

marginal significance are given the same importance of genes that are highly significant.

For example let us examine a real, publicly available, colorectal cancer dataset, obtained

from GEO (GEO ID GSE4107) [52]. This dataset consists of expression profiling of 12 early

onset colorectal cancer samples versus 10 normal samples, using the Affymetrix HG-U133

Plus 2.0 microarray platform, analyzing the genetic components behind the tumorigenesis of

colorectal cancer. After normalization and pre-processing, we performed a moderated t-test

with the limma R package to determine the significance of the fold change for each gene.

False discovery rate (FDR) was then used to control the error for multiple comparisons. In

order to select DE genes, a threshold on FDR corrected p-value, fold change, or both has to

be chosen. In this case we used a threshold of 5% on the p-values.

After the selection of differentially expressed genes using a threshold of 5% on the p-value,

gene contributions are considered equally important. For example, the contribution of the

gene with ID 3725 (jun proto-oncogene, official gene symbol JUN), marked with the red box

at the top of the list of genes is considered equal of the gene with ID 84612 (par-6 family cell

polarity regulator beta, official gene symbol PARD6B), which is at the bottom of the list of

DE genes, which has a significance barely above the threshold. The problem here is that the

log fold changes of the two genes are comparable (1.53 for JUN and −1.21 for PARD6B), and

if a method includes only the fold change in the analysis those two genes are considered as
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Figure 3.1: After the selection of differentially expressed genes using a threshold of 5% on the p-value, gene
contributions are considered equally important. For example, the contribution of the gene with ID 3725
(jun proto-oncogene, official gene symbol JUN), marked with the red box at the top of the list of genes is
considered equal of the gene with ID 84612 (par-6 family cell polarity regulator beta, official gene symbol
PARD6B), which is at the bottom of the list of DE genes, which has a significance barely above the threshold.

having approximately the same impact on the phenotype, while the statistical significance

of the two fold changes, as expressed by the p-values, clearly indicates that the amount

of trust that we can put in these two measurements is differs from one gene to the other.

This common behavior indicates the need to take into account the statistical significance of

a gene measured fold change alongside the fold change itself in order to obtain a reliable

interpretation of the data.

The second consequence of the need to select a priori a list of DE genes based on arbitrary

thresholds is that this represents an artificial truncation of the information available, as well

as an unnecessary reliance on the upstream method for the selection of genes that produces

highly variable results. It has been shown that the choice of threshold in the selection of

genes as input of analysis methods severely affects the results [89]. Figure 3.1 shows an

example of such phenomenon. The gene with ID 54537 (family with sequence similarity

35, member A, official symbol FAM35A) is barely above the significance threshold with a
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p-value of 0.050021. And yet, this gene is considered as not interesting, unlike the gene with

ID 284273 (zinc binding alcohol dehydrogenase domain containing 2, official symbol ZADH2),

although the difference between the p-values of the two genes is less than 0.00001 and their

fold changes have comparable values. This aspect indicates the need to develop methods

that overcome this limitation, using the entire list of genes in the analysis.

3.1 Incorporating gene significance in the impact analysis of signaling path-

ways

In order to incorporate the statistical significance into the analysis we proposed the ad-

dition of a term αg in the computation of the gene perturbation factor described in Equa-

tion 2.4.

The perturbation factor for a gene g is computed as follows:

PF (g) = αg ·∆E(g) +
∑
u∈USg

βug ·
PF (u)

Nds(u)
(3.1)

When using the implementation of the impact analysis described in [107] the accumulation

is computed as follows:

Acc(gi) = PF (gi)− αg ·∆E(gi) (3.2)

In [120] we proposed two alternatives for assigning the values of the weighting factor

αg.

The first alternative is defined as:

αg = −logPg
αt

(3.3)

In this equation, the term Pg represents the significance value for the measured expression

change of gene g, and αt is the significance threshold chosen for selecting DE genes. The

effect of this formulation of αg is that genes whose significance is very close to αt will be

weighted less than genes that are more significant, since
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lim
Pg→αt

−logPg
αt

= 0 (3.4)

For example, when using a threshold of 1%, a gene g1 with a p-value of 0.0001 will result

in a value of αg1 = −log 0.0001
0.01

= 2. Conversely, a gene g2 with a p-value very close to the

chosen threshold, for example 0.009 will result in a value of αg2 = −log 0.009
0.01
≈ 0.0457, thus

contributing much less to the perturbation factor of the pathway it belongs.

This alternative for weighting genes has the disadvantage that it favors very small p-

values, and it tends to infinity when p-values have the values of zero. Although this is an

unlikely situation, at least theoretically, some pathway analysis packages return such values,

especially when using empirical methods for the computation of the p-values. Therefore, we

proposed a second alternative for the computation of αg:

αg = 1− Pg
αt

(3.5)

This expression, henceforth referred to as 1MR (1 Minus Ratio) does not present the

disadvantage of the previous method, henceforth referred to as MLG (Minus LoG). With

this expression the value of αg is in the interval [0, 1], and it will follow the same behavior,

i.e. being close to zero when Pg tends to αt and being close to 1 otherwise. However, this

approach has the characteristics of compressing very small p-values (very significant) around

1. For example, a p-value of 1e−5 and a p-value of 1e10 will yield very similar values of

αg.

An inspection of the list of p-values is therefore necessary before choosing which method

is suitable.

3.1.1 Cut-off free analysis

In [120] we proposed a method for performing impact analysis without the need of pre-

selecting a list of DE genes. This method allows to use the entire list of genes expression

values. Since it makes little sense to consider equally important genes at the top of the
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list and genes at the bottom, this method builds on the concepts explained in Section 3.1

that allow to incorporate gene significance into the impact analysis of signaling pathways by

weighting genes differently based on their p-value.

The two alternative approaches are the following, named respectively ALL MLG (Equa-

tion3.6) and ALL 1MR (Equation3.7):

αg = −log Pg
Pmax

(3.6)

αg = 1− Pg
Pmax

(3.7)

Since all the genes are now considered in the analysis, and there is no list of DE genes,

the over-representation p-value that was used in Equation 2.3 cannot be computed and it is

therefore excluded from the computation of the impact factor. Hence, the significance of a

pathway is represented only by the total accumulation p-vale pAcc.

We evaluated the improvements to the impact analysis on the colorectal cancer dataset

GSE4107 already described at the beginning of this section [52]. The comparison of the top

ranked pathways when using a list of DE genes (cut-off dependent analysis) is presented in

Table 3.1 and when using a cut-off free analysis in Table 3.2. Besides the Colorectal cancer

pathway itself, several other pathways are know to be related to colorectal cancer including:

PPAR signaling pathway [99] and Toll-like receptor signaling pathway [121, 37]. Both with

cut-off dependent and cut-off free the MLG model ranks the Colorectal cancer pathway

better than the original SPIA method. In addition, with the cut-off dependent SPIA MLG

ranks better the Toll-like receptor signaling pathway and with cut-off free the ALL MLG

ranks PPAR signaling pathway better.

In addition to the single dataset comparison, in order to perform an objective evaluation of

the improvements that we proposed in [120], we used the comparison framework introduced

in [106]. This framework consists of 24 datasets describing multiple diseases: Alzheimer’s
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Table 3.1: Comparison of two models that incorporate gene significance (SPIA MLG and SPIA 1MR) with
the model without (SPIA) for the GSE4107 colorectal cancer dataset. The Colorectal cancer pathway and
Toll-like receptor signaling pathway are both ranked better by SPIA MLG. More over, the PPAR signaling
pathway is rank better by SPIA 1MR.

SPIA SPIA MLG SPIA 1MR
Name adj.pv Name adj.pv Name adj.pv
ECM-receptor interaction 0.00034 Colorectal cancer 0.181 ECM-receptor interaction 0.00034
Focal adhesion 0.00034 Dilated cardiomyopathy 0.181 Focal adhesion 0.00034
Small cell lung cancer 0.09067 Serotonergic synapse 0.181 Small cell lung cancer 0.04533
Glutamatergic synapse 0.17000 Bile secretion 0.181 Glutamatergic synapse 0.22667
VEGF signaling pathway 0.21371 Amphetamine addiction 0.181 Pathways in cancer 0.22667
Pathways in cancer 0.21371 Prion diseases 0.181 VEGF signaling pathway 0.22667
Systemic lupus erythematosus 0.21371 Toll-like receptor signaling 0.253 Pathogenic E. coli infection 0.42500
Pathogenic E. coli infection 0.31733 Protein processing in end. ret. 0.255 Systemic lupus erythematosus 0.42500
Chemokine signaling pathway 0.31733 Focal adhesion 0.348 Colorectal cancer 0.48960
Cytokine-cytokine rec. int. 0.31733 Cocaine addiction 0.420 Dilated cardiomyopathy 0.48960
Colorectal cancer 0.31733 Pathways in cancer 0.420 Type II diabetes mellitus 0.51927
African trypanosomiasis 0.31733 Systemic lupus erythematosus 0.435 PPAR signaling pathway 0.54400
Hepatitis C 0.43714 VEGF signaling pathway 0.435 Serotonergic synapse 0.54400
Staphylococcus aureus infection 0.43714 ECM-receptor interaction 0.435 Staphylococcus aureus infection 0.54400
. . . . . . . . . . . . . . . . . .

Table 3.2: Comparison of two cut-off free models (ALL MLG and ALL 1MR) with the model original model
(SPIA) for the GSE4107 colorectal cancer dataset. The Colorectal cancer pathway and PPAR signaling
pathway are both ranked better by ALL MLG.

SPIA ALL MLG ALL 1MR
Name adj.pv Name adj.pv Name adj.pv
ECM-receptor interaction 0.00034 Focal adhesion 0.174 Cytokine-cytokine rec. int. 0.000171
Focal adhesion 0.00034 Serotonergic synapse 0.174 Chemokine signaling pathway 0.000171
Small cell lung cancer 0.09067 Colorectal cancer 0.174 Focal adhesion 0.000171
Glutamatergic synapse 0.17000 ECM-receptor interaction 0.174 ECM-receptor interaction 0.000171
VEGF signaling pathway 0.21371 Dilated cardiomyopathy 0.174 Staphylococcus aureus infection 0.022833
Pathways in cancer 0.21371 Prion diseases 0.174 Systemic lupus erythematosus 0.022833
Systemic lupus erythematosus 0.21371 Parkinson’s disease 0.174 Pathways in cancer 0.034250
Pathogenic E. coli infection 0.31733 Cocaine addiction 0.174 Small cell lung cancer 0.034250
Chemokine signaling pathway 0.31733 PPAR signaling pathway 0.174 Pathogenic E. coli infection 0.076111
Cytokine-cytokine rec. int. 0.31733 Bile secretion 0.174 PPAR signaling pathway 0.112091
Colorectal cancer 0.31733 Pathways in cancer 0.174 Colorectal cancer 0.112091
African trypanosomiasis 0.31733 Systemic lupus erythematosus 0.183 Hepatitis C 0.114167
Hepatitis C 0.43714 Renal cell carcinoma 0.190 Glutamatergic synapse 0.137000
Staphylococcus aureus infection 0.43714 Protein processing in end. ret. 0.209 Sulfur relay system 0.146133
. . . . . . . . . . . . . . . . . .
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Table 3.3: The list of data sets used for the evaluation of the performance of pathway analysis methods. For
a more detailed description see [106]

Data set Disease / Condition Pathway

GSE1297 Alzheimer’s disease hsa05010
GSE5281 EC Alzheimer’s disease hsa05010
GSE5281 HIP Alzheimer’s disease hsa05010
GSE5281 VCX Alzheimer’s disease hsa05010
GSE20153 Parkinson’s disease hsa05012
GSE20291 Parkinson’s disease hsa05012
GSE8762 Huntingon’s disease hsa05016
GSE4107 Colorectal Cancer hsa05210
GSE8671 Colorectal Cancer hsa05210
GSE9348 Colorectal Cancer hsa05210
GSE14762 Renal Cancer hsa05211
GSE781 Renal Cancer hsa05211
GSE15471 Pancreatic Cancer hsa05212
GSE16515 Pancreatic Cancer hsa05212
GSE19728 Glioma hsa05214
GSE21354 Glioma hsa05214
GSE6956C Prostate Cancer hsa05215
GSE6956AA Prostate Cancer hsa05215
GSE3467 Thyroid Cancer hsa05216
GSE3678 Thyroid Cancer hsa05216
GSE9476 Acute myeloid leukemia hsa05221
GSE18842 Non-Small Cell Lung Cancer hsa05223
GSE19188 Non-Small Cell Lung Cancer hsa05223
GSE3585 Dilated cardiomyopathy hsa05414

disease, Parkinson’s disease, Huntington’s disease, colorectal cancer, renal cancer, pancreatic

cancer, glioma, prostate cancer, thyroid cancer, acute myeloid leukemia, and non-small-cell

lung cancer. The list of datasets is summarized in Table 3.3.

These diseases have been chosen because a pathway exists describing the condition in

analysis in the experiment that generated the dataset. This pathway is considered as target

pathway, i.e. the pathway that is most likely related to the condition. The evaluation works

under the reasonable assumption that, when comparing two pathway analysis methods, the

best method is the one that ranks the target pathway higher and with lower p-value. Hence,

we compare our analysis strategies by comparing the distributions of ranks and p-values
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Figure 3.2: Comparison using the list of DE genes: distribution of the rank and p-value of the target
pathway over 14 data sets. Both methods that incorporate gene significance rank the target pathways better
than SPIA and also assign them a more significant p-value.

of target pathways across the entire list of datasets. Figure 3.2 and shows the comparison

between the impact analysis proposed in [107] and the two implementations that take into

account the significance of individual genes, while Figure 3.3 shows the comparison between

the two implementations that do not need a list of differentially expressed genes as input. In

the table the results of the original method are in the column marked SPIA, whereas the two

methods we proposed are in the columns SPIA MLG and SPIA 1MR, for the alternatives

in Equations 3.3 and 3.5, respectively. Both in terms of ranks and p-values the two models

that incorporate gene significance (SPIA MLG and SPIA 1MR) perform better than the

method that does not incorporate it (SPIA), yielding lower p-values for the target pathway,

hence offering a more accurate insight on the biological phenomenon. When evaluating the

cut-off free models, all 24 datasets where used. Figure 3.3 shows that ALL MLG model

performs slightly better than ALL 1MR, but they are outperformed by the original impact

analysis.

These results indicated that the introduction of the individual gene significance into the

impact analysis of signaling pathways leads to more biologically relevant results and, as a

consequence, it has the potential to lead to a deeper insights of the biological phenomena



www.manaraa.com

37

Figure 3.3: Comparison of cut-off free analysis: distribution of the rank and p-value of the target
pathway over 24 data sets. Both methods perform similar in terms of rank and p-value with the ALL MLG
model performing slightly better. However, both methods perform worse than the original impact analysis.

involved in a certain condition.

3.2 Genetic algorithms for the estimation of individual gene contribution in the
analysis of signaling pathways

In Section 3.1 we proposed two methods for the incorporation of individual gene sig-

nificance into the impact analysis of signaling pathways. These approaches rely on the

assumption that the contribution that a gene exercises on the pathways it belongs to is pro-

portional to the statistical significance that is computed in a specific dataset. However, this

might not be the case. For example, we can take the Insulin signaling pathway shown in

Figure 3.4. If the insulin receptor (INSR, marked in red in the left side of the figure) is not

present, the majority of the pathway is shut off, hence it is natural to assume that the INSR

gene is more important than most of the other genes in that specific pathway. Conversely,

if several genes are involved in a pathway but they only appear somewhere downstream,

changes in their levels may not affect the given pathway as much. Moreover, some genes

have multiple functions and are involved in several pathways but with different roles. For

instance, the same INSR is also involved in the Adherens junction pathway as one of many

tyrosine kinase receptors. However, if the expression of INSR changes, this pathway is not

likely to be heavily perturbed because INSR is just one of many receptors on this pathway.
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Figure 3.4: KEGG Insulin Signaling Pathway. The insulin receptor (INSR, in red, left side of the image) is
the only entry point in this pathway and a big change in its expression will have a high impact on the entire
pathway. Source: KEGG [60] - http://www.genome.jp/kegg/pathway/hsa/hsa04910.html

We consider all these factors to affect the importance of a gene and therefore its contribution

to the given pathway. In principle, these contributions can be arbitrarily set beforehand,

for example based on the type of gene product (i.e., transcription factor, transmembrane

receptor, etc.), or with the approaches developed in 3.1. However, there is currently no basis

for setting exact qualitative values for various gene types.

This is why in [119] we proposed an approach for estimating the contribution of individual

genes that departs from such assumption. In this approach we used genetic algorithms in

order to objectively compute these contributions, based on the performance of the impact

analysis on a group of datasets representing a variety of conditions.

Genetic algorithms (GA) are search methods based on natural concepts such as natural

selection, evolution and genetics. In its basic form, a GA involves the evolution of a fixed size

population across generations, where each individual of the population represents a possible

solution in the search space. Each individual is represented by a set of genes, and each gene

http://www.genome.jp/kegg/pathway/hsa/hsa04910.html
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is represented in a way that depends by the implementation of the GA (e.g. binary string

or floating point). The evolution of the population results in one or more of the individuals

satisfying a certain criterion of the search, for example a local maximum or minimum. The

evolution is led by a few key events: selection, crossover, and mutation. Selection is the

process of elimination of the individuals that do not pass a fit-test. Several methods exist for

selection, but the basic idea is to give preference to the better individuals. The key element

in the selection is the way of determining which individual is better. For this purpose,

an evaluation can come from an objective function that gives each individual a score that

can serve, for example, for ranking the population. Crossover is the event in which two

individuals A and B are chosen to be mated. The two sets of genes belonging to the two

individuals are parted in the same way, and then two new individuals are constructed taking

one of the partitions of A and one the partitions of B. Mutation, like crossover, is a way to

explore different structures. This event represents a single, usually low-probability, random

change in a gene. Selection, crossover, and mutation are applied across generations, and the

average evaluation of the population increases. A stopping criterion is then applied (e.g.

limit to the number of generations, threshold on the result of the evaluation function for

the best individuals), and the best individuals are chosen as solutions. The use of GAs in

bioinformatics is widespread, from applications in sequence alignment [42] to RNA structure

prediction [116]. This technique, however, found little use in the context of regulatory

pathway analysis. Most of the approaches apply genetic algorithms while trying to model

the underlying, unknown, network [132], or to simulate the network dynamics [53]. However,

to date there are no applications, to the best of our knowledge, of GAs to the analysis of

regulatory pathways in the context of phenotype change, and our approach represented the

first work in that direction.

We focused on the impact analysis described in Section 3.1 where the gene contribution

can be captured by the factor αg in Eq. 3.2.

Given a predefined set of pathways SP , we obtained the set of unique genes U contained
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in these pathways. We designed our individual as a vector of size equal to the size of the

set U . Each gene, in the context of genetic algorithm, is represented by a floating point

number between 0 and 1, representing the contribution of each gene g ∈ U .

The genetic algorithm has been implemented in the R Framework [110], adapting the

genalg package, allowing for parallel execution of the evaluation of the individuals. Mutation

chance has been set to 10%, while the selection method used was elitism of the top 20% of

the population ranked by fitness. The type of crossover was single point. The parameters

have been chosen according to the indications in [41].

The goal of the evaluation function is to capture the ability of the gene weights to model

biological knowledge encoded in the given pathways and not any specific condition. In other

words, the gene weights have to capture the gene importance related to the topology of the

pathway, rather than computing the gene importance based on the data linked to a specific

condition. The evaluation function is based on the validation of pathway analysis methods

described in [106].

Given the a priori defined set of data sets DS with their associated target pathways, the

evaluation function scores each individual by applying the impact analysis on each data set

independently and recording the normalized rank of the target pathway associated with each

data set. The return value of the evaluation function will be the average normalized rank of

the target pathway over all data sets in DS. Hence, the lower the result of the evaluation

function, the better the individual. Starting from the pool of datasets shown in Figure 3.4,

we divided the pool into train and test groups to emulate two scenarios.

These two scenarios were chosen in a way that captures an ideal environment and the real

environment. In the ideal environment, each one pathway of the 140 pathways available in

the KEGG database would be associated with a dataset. Since this is not the case, in the

real environment we have both pathways that are associated to a dataset and pathways that

are not.

For both scenarios we selected the training and testing datasets in a similar fashion. First,
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Table 3.4: The list of data sets used for the evaluation of the performance of pathway analysis methods. For
a more detailed description see [106]

Data set Disease / Condition Pathway Scen. 1 Scen. 2

GSE1297 Alzheimer’s disease hsa05010 train train
GSE5281 EC Alzheimer’s disease hsa05010 test test
GSE5281 HIP Alzheimer’s disease hsa05010 test test
GSE5281 VCX Alzheimer’s disease hsa05010 test test
GSE20153 Parkinson’s disease hsa05012 test test
GSE20291 Parkinson’s disease hsa05012 train train
GSE8762 Huntingon’s disease hsa05016 - test
GSE4107 Colorectal Cancer hsa05210 train train
GSE8671 Colorectal Cancer hsa05210 test test
GSE9348 Colorectal Cancer hsa05210 test test
GSE14762 Renal Cancer hsa05211 - -
GSE781 Renal Cancer hsa05211 - -
GSE15471 Pancreatic Cancer hsa05212 train train
GSE16515 Pancreatic Cancer hsa05212 test test
GSE19728 Glioma hsa05214 - test
GSE21354 Glioma hsa05214 - train
GSE6956C Prostate Cancer hsa05215 - train
GSE6956AA Prostate Cancer hsa05215 - test
GSE3467 Thyroid Cancer hsa05216 - train
GSE3678 Thyroid Cancer hsa05216 - test
GSE9476 Acute myeloid leukemia hsa05221 train -
GSE18842 Non-Small Cell Lung Cancer hsa05223 - test
GSE19188 Non-Small Cell Lung Cancer hsa05223 - train
GSE3585 Dilated cardiomyopathy hsa05414 - -

we performed the impact analysis, as implemented in [118] with the default set of α = 1,

on each data set. We next ordered the data sets based on the normalized rank of the target

pathway and selected datasets starting at the top of the list. This approach allowed us to

avoid data sets in which the target pathway was badly ranked, possibly indicating that those

particular data sets contained bad data or they were not representative for that particular

condition.

In the real environment scenario, based on the ordered list of data sets, we selected

as train data sets the top five data sets that represent different conditions. The test set

was chosen based on the conditions of five data sets selected as train. All the remaining

data sets that study one of the five conditions was selected as test. The set of pathways

for which the gene contributions will be estimated was chosen based on the train data sets.

We selected five pathways representing the target pathway for the respective conditions. We

then selected the top three pathways (based on the impact analysis results) on each of the
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five train data sets to be part of the train set. This provided an additional 11 pathways,

generating a train set that included a total of 16 pathways.

The set of genes used in this scenario was the set of genes that appear at least once in

any of the pathway selected for training. We obtained a set of 1, 355 genes. As described

in Section 3.1, each gene is associated with a parameter αg. Therefore, our individual had

a total of 1, 355 genes to be used in the genetic algorithm search. We choose the size of the

population to be equal to the number of genes of an individual (1,355 individuals), and we

performed 100 generations with a mutation rate of 1%. We applied an elitist selection to the

population, after each evaluation, where the top 20% individuals in the list ranked by the

evaluation function were passed to the next generation with no crossover.

In the ideal environment scenario, based on the same ordered list of data sets, we

selected the top ranked data set for each condition as the train. Given that some of the

conditions did not have at least two data sets associated to them and therefore no test data

set could be selected, these conditions are removed from further analysis. Two other datasets

relative to renal cancer had to be removed due to the excessive variability of the rank of the

target pathway when the analysis was performed with default parameters. Hence, the train

would contain eight data sets and the test eleven data sets (see Table 3.4). As this scenario

would represent the ideal environment, we only selected for analysis the eight pathways

associated as target pathways with the conditions in the train set. The total number of

unique genes in these pathways was 372. We choose the size of the population to be 600, and

we performed 100 generations with a mutation rate of 1%. We applied an elitist selection to

the population, after each evaluation, where the top 20% individuals in the list ranked by

the evaluation function were passed to the next generation with no crossover.

For both scenarios, at the end of the evolution of the population we extracted a random

individual among the individuals with the best ranks (smallest value from the evaluation

function) and we evaluated its performance in the test set. This yielded an average normal-

ized rank of the individual on the test set of datasets. The evolution of the fitness function
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Figure 3.5: The evolution of the best and mean evaluations over the entire population at each generation.
The evaluation function for one individual is the mean normalized rank over the training data sets. Because
the evaluation function uses the normalized rank, the minimal value of the evaluation function is dependent
on the total number of pathways evaluated (16 for Scenario 1 and 8 for Scenario 2). This minimal value
achievable is show with a horizontal dotted line and is equal to 1/16 for Scenario 1 and 1/8 for Scenario 2.
This value represents the case where the target pathways are ranked as first in all training data sets.

over all generation for each scenario is presented in Figure 3.5.

For both scenarios, the rank of the best individuals was better than the result obtained

with default parameters. By default parameters, we refer to the original impact analysis

method (see Equation. 2.5), where the weight of each gene was considered to be maximum

αg = 1 for all gene. In order to assess if the performance of the individual was significantly

better than a random choice, we used a bootstrap approach, generating the null distribution

of the average normalized ranks, as described in [32]. We obtained this by creating 1,000

individuals with values of the gene weights randomly drawn from an uniform distribution

with range [0, 1]. Each individual was then evaluated on the test set. This procedure yields

a p-value, computed as the number of random individuals that obtain a score lower than the

score of the best individual. This p-value represents the probability of getting a score lower

than the best individual just by chance. We performed this procedure for the populations
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Figure 3.6: Null distributions of the average mean ranks of random individuals on the test sets. The left
panel shows the distribution of the evaluation of random individuals on the test set associated with the
selection of pathways in the first scenario, while the right panel shows the distribution of the evaluation of
random individuals on the test set associated with the selection of pathways in the second scenario. The
blue lines represent the value of the average normalized rank of the best individual in the two populations,
while the red lines represent the average mean rank of the default individuals (all the αs equal to 1). The
results show that the default values are reasonable but only slightly better than those provided by a random
choice. In both cases, the values obtained after the GA search are significantly better than the mean of the
random chance values.

obtained with both scenarios described above. The best individual of the population obtained

from the first scenario achieved a p-value of 10.4% on the test set, while the best individual

of the population obtained with the second scenario achieved a p-value of 3.3% on the test

set. The distributions relative to the two bootstraps are shown in Figure 3.6. The left panel

shows the distribution of the evaluation of random individuals on the test set associated with

the selection of pathways in the first scenario, while the right panel shows the distribution of

the evaluation of random individuals on the test set associated with the selection of pathways

following the second scenario. The blue lines represent the value of the average normalized

rank of the best individual in the two populations, while the red lines represent the average

mean rank of the default weights.

These results show that in both cases the optimization reaches significantly better results
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Figure 3.7: Normalized ranks of target pathways using parameters from best individuals (left side of each
panel) and default parameters (right side of each panel). The left panel shows the comparison between the
best individual of scenario 1 and default parameters in the test set from scenario 1, while the right panel
shows the comparison between the best individual of scenario 2 and the default parameters in the test set
from scenario 2. The blue line represents the mean of ranks, while the black line represents the median.
In the left panel (scenario 1, real environment) the optimization procedure results in lower mean rank and
lower median. In the right panel (scenario 2, ideal environment) the optimization procedure results in the
lower mean rank, reduced variance, and the same median.

than the results obtained with the default set of parameters. In the test set of the real

environment scenario a random choice would perform worse than the optimized parameters

89.6% of the times. In the test set of the ideal environment scenario a random choice would

perform worse than the optimized parameters in more than 96% of the times. These values

are also considerably better than those obtained with the default values.

Figure 3.7 shows the comparisons between the ranks obtained with best individuals and

the ranks obtained with the default parameters for both scenarios when we perform the

analysis in the respective test sets. The left panel shows the comparison performed in the

test set of the first scenario. In this scenario the best individual outperforms the default

parameters obtaining a lower mean (0.25 against 0.335), lower median(0.156 against 0.25),

while there is no improvement in terms of variance (0.296 against 0.207). The right panel

shows the comparison performed in the test set of the second scenario. In this scenario the

best individual obtains a lower mean (0.301 agains 0.357), the same median (0.187), and a

decreased variance (0.038 against 0.102).
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The most important limitation associated with this framework is still related to the eval-

uation of the pathway analysis results. The evaluation only considered the rank of the target

pathways. An individual was considered fitter than another one if it the average rank of the

target pathways was lower. In reality, a more important distinction is between those individ-

uals that rank the target pathways as significant and those that do not. An improvement in

rank that still has the target pathways as not significant is not really an increase in accuracy,

and therefore it should not be represented as an increased fitness. Conversely, a decrease

in ranking within the significance range may not be a decrease in accuracy, and therefore

should not always be penalize as a decrease fitness. However, using a step-like evaluation

function based on the significance would have introduced abrupt changes that could have

increased the difficulty of the genetic algorithm search.

Despite this limitation, the results obtained with this framework showed the effectiveness

of evolutionary computation techniques in the optimization of parameters in bioinformatic

applications. This framework is general enough to be applied to a multitude of methods for

the analysis of biological pathways, where parameters are often chosen arbitrarily.

3.3 Estimating interaction efficiency of directly linked genes using microarray
time series analysis

In Equation 2.4, the term β can be seen as a weight of the interaction between genes. In

the standard implementation of the impact analysis, the value of β has been determined by a

panel of experts. For example, an interaction of type activation has been assigned the value

1, while an interaction of type inhibition has been assigned the value −1. This term can be

also seen as the regulatory efficiency of each interaction, i.e. the amount of impact that flows

along that interaction from the gene upstream to the gene downstream the edge. The default

values given to the various types of interaction present a number of limitations. First, out of

the 25 different interactions present in KEGG and considered in the impact analysis), only

15 have a value assigned to them. These values are limited by the expertise of the panel of

expert chosen at the time the impact analysis was developed. The fact, for example, that



www.manaraa.com

47

the interaction dephosphorylation has been assigned a value of zero means that either no

signal flows through that interaction or that there was not enough knowledge on that type

of interaction to assign a value different from zero. Even when the β is different from zero, it

is either +1 or −1, although there is no reason why it could be limited to those two values.

Another big limitation is that the values of β are not assigned to a specific interaction, but

to an interaction type. This means that all the interactions of the same type will have the

same effect, disregarding the genes at the two ends. Lastly, the interactions are considered

the same in all the conditions. It is intuitive to think that in some specific conditions some

interactions may work differently. For example, in a certain disease two genes might not

communicate, making the weight for that interaction zero for that specific disease. These

limitations raise the need for a method for the assessment of the regulatory efficiency of

gene to gene interactions in signaling pathways. In [27] we analyzed a number of methods

for assessing such efficiencies by analyzing time series data. Time series data consists in

measurements of gene expression of the same biological sample at sequential instants in

time to profile the behavior of the gene as time progresses. This type of experiments allows

researchers to trace the evolution of gene expression, for example, after a certain treatment.

In our work we chose to test the ability of three different metrics to identify interactions

that are already present in the KEGG signaling pathway database. The metrics were chosen

based on specific features of gene expression time series. The first involved a comparison of

the profiles of time series based on bit string matching. The second was a specific application

of Dynamic Time Warping to detect similarities even if the time series are one the stretched

and delayed version of the other. Finally, the third was a quantitative comparative analysis

derived by a frequency domain representation of time series: the similarity metric is the

correlation between dominant spectral components. These three approaches were tested on

a real case study and a final comparison of them was performed using Information Retrieval

benchmark tools.
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3.3.1 Microarray data pre-processing and noise reduction

The data set analyzed was the result of an experiment of type expression profiling by

array, performed at the Karmanos Cancer Institute. This experiment analyzed the expression

profile of human mammal epithelial cells in response to the administration of HER2-specific

small molecule kinase inhibitor (CP724,714). The resulting dataset consists of samples from

a 24, 527 probe Illumina microarray, taken at intervals of three hours for a total of 45 h.

The data are collected in a set of 24, 527 time series, each one consisting of 16 time points

and one measurement per time point. The information about each time point also contains

the p-value, to allow an assessment of the quality of the measurement. More details on the

experiment that produced the dataset can be found in [16].

Data processing was performed in the R statistical framework, and pathways were re-

trieved from the Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.genome.

jp/kegg/) from the R library SPIA [107].

A first assumption that we made is that each time point depends only on the time point

before. This aspect was taken in account in two out of the three similarity measures studied.

A second assumption was made about the characteristic of the time series representing

transcriptomic profiles, which feature a noisy and stochastic component [14, 35, 67, 100].

Therefore, the second assumption is that these time series are prone to random errors of

two different origins: errors that are characteristic of the biological process of transcripts

generation, and errors produced by the data extraction using various techniques and in

particular microarrays. In order to limit the effect of such errors we applied a Savitzky-

Golay filter, a noise reduction procedure [96].

Given these assumptions, the analysis proceeded as follows. First we selected the genes

that had a p-value below the threshold of 0.05 after FDR correction for multiple comparisons

for at least half of the elements of the time series. This empirical criterion was motivated by

the trade off between a meaningful significance threshold and the desire to have a sufficient

number of probes. The next step was the selection of differentially expressed genes. Several

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/


www.manaraa.com

49

statistical models for the identification of differentially expressed (DE) genes in time series

have been proposed [104, 74, 59, 39, 102].

We chose to use the package limma [102]. The approach implemented by limma is based

on a t-test and on a linear approximation of the behavior of individual genes, in which

the coefficients of the adapted models describe the differences of RNA represented in the

microarray. The limma algorithm was chosen to select DE genes because it was deemed the

best fit for our dataset by a prior analysis performed on a very small subset of data, being

able to select with a higher precision the genes that were over or under expressed.

Finally, we chose to focus only on the genes that had only one upstream gene. This

was done in order to eliminate overlapping influences on genes, since not all the similarity

methods were able to deal with this factor.

As stated in the above assumptions, even after such filtering, the microarray data are

considerably affected by noise. Time series, regarded as dynamic functions, are made up

of a signal component, which varies slowly over time, and a stochastic component with a

much faster dynamic. To better understand the difference between speeds of transition in

signal and noise, it is easier to transpose the problem in the frequency domain, using Fourier

transforms of the signals. In general, from the biological evidence, the band of the signal

is limited, while the band of the noise is virtually infinite. In other words, the signal has a

low bandwidth, while the noise has a high bandwidth. Therefore, introducing in the process

pipeline a low pass filter having a cut-off frequency properly tuned to the signal (a filter

that stops high bandwidth signals, while accepting low bandwidth signals), it is be possible

to reduce frequencies out of the band of interest, isolating almost completely the effective

signal [93].

A Savitzky-Golay filter, based on the principle of local least squares fitting of a polynomial,

has been applied for time series de-noising. The basic idea is to replace each data point by a

weighted average of surrounding data points, which measure very nearly the same underlying

value. In this way, averaging can reduce the level of noise without much biasing the result.
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Figure 3.8: (a) Pre-conditioning procedure: The input is a matrix, M, whose rows are gene expression time
series from microarray experiment. The first step of the process (“p-value Selection”block) produces a matrix
of 15, 744 time series with reduced noise. Then, after discarding time series that are not significant and/or not
differentially expressed (“Differential Expression” block), 8524 times series are left. The “LINK” block checks
the existence of a direct link between genes in a pathway. Finally, only 3116 time series expressing genes
directly linked in a single pathway are arranged in the matrix N. This matrix is the input of the “Processing”
block, which outputs the matrix column of the correlation values. (b) Selection of genes directly linked in
pathways, and with unique upstream node.

Savitzky-Golay filters are well-adapted for data smoothing and the simplest type of digital

filter replaces each data value by a linear combination of itself and some number of nearby

neighbors [6, 96]. Figure 3.8 shows a block diagram representation of the experimental design

of the study. The final de-noising block in Figure 3.8 is added to take into account the various

noise components, which overlap randomly with the signal.

3.3.2 Similarity metrics

The pairwise comparison between selected genes is the next step in the processing of the

time series. The most immediate and basic idea for quantifying the relationship between two

random dynamics is the calculation of Pearson’s correlation coefficient between them. In

order to take into account the propagation time of biological signals, one could calculate the

correlations between shifted versions of all the time series (from 0 to 9 h). If, for example,

the signal from gene A takes approximately 3 h to get to gene B, and the two genes are linked
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Figure 3.9: Boxplots of the distribution of Pearson correlations between genes directly connected by activation
(a) and inhibition (b) interactions. We considered a detected“activation” as a correlation value greater than
0.5 and a detected “inhibition” as a correlation value smaller than -0.5.

by an activation edge, we expect the 3-hour shifted time expression profile of gene B to be

positively correlated with the time expression profile of gene A. The results of this simple

analysis showed its limitations. More specifically, the Pearson correlation index performed

poorly in identifying the type of the regulation, being able to identify the relationship of

activation only in 45% of the cases, and confusing inhibition interactions with activation

in 50% of cases. Figure 3.9 shows the distribution of the correlation indices for activation

(panel a) and inhibition (panel b) interactions.

Given the poor results of the classical correlation, we applied to the data three distinct

methods for the computation of similarity between time series, in order to assess which one

is the most effective: differential comparison, Dynamic Time Warping (DTW) and dominant

spectral component (DSC).

Differential comparison.

Due to the nature of biological phenomena, the time series of a gene can be a translated,

softened, or deformed version of the time series of another gene. However, if the two genes are

related, we expect the trend of the series to be consistent. This trend could be summarized by
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the monotonicity (e.g. increasing or decreasing) and concavity (or convexity) of the discrete

function representing the series. Like in the previous section, we performed the comparison

with the shifted versions of all the time series (shifted from 0 to 9 h). With this approach,

the qualitative comparison of time series uses as parameters the differential information of

first order, i.e. increase or decrease, and the differential information of second order, i.e.

concavity or convexity, of the function representing the series. Each section joining two

points in time is encoded with two bits: 00 if the difference between the extremes of that

interval is positive, 11 if it is negative, and 01 if it is zero. The same process is repeated

on the differences of differences, or second order differences. Since our series are composed

of 16 time points the result of the differential of the first order will be a string of 30 bits.

This is because for each pair of points (values in the time series) we have two bits describing

the difference between them. Since there are 15 pairs, we will have 30 bits (15 bit pairs).

Similarly, the result of the differential of second order will be a string of 28 bits, since there

will be 14 “pairs of bit pairs”. The comparison between genes directly connected is therefore

reduced to a comparison between two strings of bits, properly shifted to capture any delays

from 0 to 9 h. The two strings of bits were compared using the Hamming distance [44].

The similarity index is computed as the difference between 1 and the ratio among distance

and total number of bits. For an instance the strings 1111000111 and 0011110111 have a

Hamming distance equal to 4 and the similarity index is equal to1− 0.4 = 0.6. In our case

study a similarity index of 0.95 is heuristically used as the threshold to detect an effective

link of activation type between two genes. Likewise, inhibition can be detected reversing all

pairs of bits of type “00” and “11” in one of the compared strings.

Dynamic time warping.

Dynamic Time Warping (DTW), one of the discriminative algorithms based on pattern

matching, is borrowed from the fields of voice and motion recognition and measures the

similarity between two sequences that vary in time. It provides a measure of the simi-

larity between two time series, assuming that the time pattern of one of them can be a
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distorted, delayed, or stretched version of the other. Dynamic Time Warping is an excel-

lent method for the discovery of matches between two time series, when one is a non-linear

distortion of the other, with respect to the independent variable (typically the time). How-

ever, some constraints must be satisfied for the computation of the similarity between time

series: monotonicity in the matches and the maximum limit of possible matches between

adjacent elements of the sequence. In particular, this type of algorithm for time series gene

expression has been shown to be an improvement with respect to other types of similarity

measures [2]. The objective of DTW is to compare two time series X = (x1, x2, . . . , xN) and

Y = (y1, y2, . . . , yN) of the same length N ∈ N. In order to measure the similarity between

these two sequences using DTW, we first construct an N ×N matrix D, where the element

Di,j corresponds to the squared distance, i.e. d(xi, yj) = (xi− yj)2 . Then we retrieve a path

through this matrix that minimizes the total distance between X and Y, choosing progres-

sively contiguous elements in D. The optimal path is the one that minimizes the warping cost

DTW (X, Y ) = min(
√∑K

k=1 wk), where wk is an element in a set of K contiguous elements

of the D matrix. In other words, a stretching of the time axes of the sequences X and Y

brings them as close as possible to each other and this minimum distance is considered as a

pairwise similarity measure of the time series. Remarkably, despite of the large search space,

this algorithm can be computed in O(N2) time using dynamic programming, i.e. Bellman’s

equation [7].

Dominant spectral component.

The third method for assessing similarity is the dominant spectral component (DSC)

approach. The model presented in [127] describes the spectral decomposition of expression

profiles, allowing a comparison between frequency components of time series considered as

signals, and this representation is capable of identifying links that are completely missed by

the traditional linear correlation. Furthermore, using this method in the case of genes that

are subjected to the influences of different upstream genes at the same time, it is possible to

distinguish the influence that is due to different genes. The basic idea of this technique is
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to decompose the time series x(n), n ∈ N, in a set of sinusoids with variable amplitude and

having various frequencies:

x[n] =
M∑
i=1

xi[n] =
M∑
i=1

αi · exp(σin) · cos(ωin+ ϕi) (3.8)

The parameters amplitude αi, damping factor σi, angular frequency ωi, and phase shift

ϕi, (with i = 1, 2, ...,M , where M is the number of spectral components), can be calculated

with the autoregressive method [126]. These completely define the spectrum of the temporal

expression profile of a gene. The similarity of the sequence x[n] with another sequence y[n]

can be formulated again as the sum of the components of partial cross-correlation weighted

with the relative energy of the components:

x[n] ◦ y[n] =
∑
i

∑
j

√
ExiEyi
ExEy

xi[n] ◦ yi[n] (3.9)

The symbol “◦” represents the cross-correlation operator and Ex and Ey, Exi , and Eyi are

the values of total energy of a sequence (Ey and Exi) or of one of its components (Exi and

Eyi). These energy components are computed as follows:

Ex =
+∞∑

n=−∞

|x[n]|2 ; Ey =
+∞∑

n=−∞

|y[n]|2 (3.10)

Eq. 3.10 shows how the correlation between two sequences can be split in a set of partial

correlations, which contains more detailed information about the similarity between a couple

of genes. This type of similarity is able to eliminate spectral components that are low in

amplitude in at least one of the compared signals. Therefore, the phase and the noise com-

ponents in amplitude spectrum, which ordinarily would make similarity recognition difficult,

can be neglected. On the same grounds, the weighted partial components of correlation can

be considered as a more reliable measure of the connection between genes. In particular, the

heaviest weighted component resulting from the decomposition can be regarded as a metric

to measure the correlation between genes. The corresponding non-weighted value is called
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Figure 3.10: Time series (left, top panel), spectral amplitude and phase decomposition (left, middle and
bottom panels), and waveforms corresponding to the dominant spectral components of two genes expressions
values connected with an interaction of type “activation”.

cross-correlation coefficient of the component itself. Figure 3.10 shows an example of the

expression time series of two genes (red and black waveforms) connected by an activation

inter- action (left, top panel), the corresponding spectral decomposition in amplitude and

phase (left, middle and bottom panels) and the waveforms corresponding to the dominant

spectral components (right pane dashed lines).

3.3.3 Performance comparison

The result of the similarity metrics can be evaluated with a method borrowed from infor-

mation retrieval. The comparison between two series may have five different outcomes: (a)

correlation detected when an appropriate link in the pathway exists between the two genes,

i.e. β 6= 0, and therefore a true positive (TP), (b) no correlation detected when no link

exists, i.e. β = 0, and therefore a true negative (TN), (c) correlation detected when no link

exists, i.e. β = 0, and therefore a false positive (FP), (d) no correlation detected when a

link exists, i.e. β 6= 0, and therefore a false negative (FN), and (e) a correlation is detected

when a link exist, but the correlation and β are opposite in sign. In our case, the class of

positive regulations is much larger than the class of negative regulations, so the Matthews

Correlation Coefficient (MCC) [77] was used as a performance index (in addition to preci-

sion, recall and accuracy) because it is particularly suitable in the case of asymmetric binary
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classifications with a significant difference of magnitude in the two classes [58]. The MCC

essentially specifies the relationship between the predicted and the observed classification;

it can take values in the range [-1;1]. The value -1 occurs if the prediction is opposite to

the observed, +1 if the prediction is correct and 0 if the classifier performs a random choice.

The MCC can be calculated directly from the confusion matrix using the formula:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.11)

If any of the factors in the denominator were zero, this ratio would be undefined. In

this case the denominator can be set equal to 1, which will make MCC equal to 0 in that

particular case. The other indices considered for the comparison of the similarity measures

are the classical accuracy, precision, and recall. Figure 3.11 shows the performance, in

terms of these indexes, for the three methods compared, plus the performance of the simple

Pearson’s correlation.

The Differential Comparison, DTE and DSC, applied to the subset of genes selected in

the pre-processing phase, produced for each pair of directly linked genes a “similarity” value.

These values were compared to the value of the β factor from the signaling pathways included

in the SPIA package. These 132 pathways are extracted from the Kyoto Encyclopedia of

Genes and Genomes (KEGG) database of pathways, and they cover 4253 unique genes, out

of which 3116 were found in the microarray used in the experiment. These values refer to

the time the experiment was performed.

The performances in terms of accuracy, precision, recall and Matthews Correlation Coeffi-

cient (MCC) were computed as described in detail in the paragraphs above. In particular we

considered true positives those cases in which the detected correlation was greater than 0.75

in case of β = 1 and smaller than -0.75 in case of β = −1. The total number of direct links

was considered the universal set of reference. The results are summarized in Figure 3.11.

Each column represents a performance index with respect to the algorithm applied.

The histograms in Figure 3.11 show that the accuracy is almost the same for the three
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Figure 3.11: Barplots of performance comparison of similarity metrics, Differential comparison, DTW and
DSC in the analysis of gene expression by microarray to assess the correspondence to regulatory efficiency
in human signaling pathways.
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metrics, which means that the overall number of true positives and true negatives is com-

parable among the three methods. DTW is the worst-performing similarity metric. This

was expected because it typically stretches the values of data points to “adapt” two wave-

forms, and this feature in our experiment can result in a distortion producing low sensitivity

and positive predicting values. The differential comparison metric, although computation-

ally heavy, shows a capability of about 60% in terms of precision in classifying the links

between genes starting from our dataset. DSC consistently achieves the best performance

among the three methods according to all performance indexes: accuracy, recall, precision

and Matthews correlation coefficient. Due to its features of analysis in the frequency domain,

DSC processes all pairs of genes directly connected in the band of interest and thus it is par-

ticularly insensitive to noise effects. The superiority of the performance of DSC algorithm

is evident in the MCC index, which is the most significant in our experiment, as already

specified.

Furthermore, in principle DSC can be effectively used even in those situations in which a

gene receives more than one signal (i.e. has more than one upstream gene). This is because

in frequency domain it is possible to distinguish between the different components produced

by signals with different frequencies.

These results indicated that DSC achieves the best performance in terms of accuracy,

precision, recall, and MCC, because of the ability to filter noise and to recognize the frequency

similarity in directly linked genes. The effectiveness of DSC in identifying relationships

among the temporal expression profiles of genes makes it a suitable tool for a wide range of

applications beyond the one we performed, such as network discovery.
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CHAPTER 4 PATHWAY CROSSTALK

Many methods are available for the analysis of signaling pathways in the context of the

interpretation of high-throughput biological data.

The common aspect of all these approaches is that they calculate a p-value that aims

to quantify the significance of the involvement of the given pathway in the condition under

study.

All existing methods treat the pathways as being independent, i.e. the analysis is per-

formed individually for each pathway. Biological systems, in reality, are not just disconnected

entities that operate separately one from each other, but, they are interconnected parts of

the entire system that represents a whole organism. Signaling pathways can considerably

affect each other through a “crosstalk” phenomenon related to genes that are shared among

many pathways. Although it is intuitive that various pathways could influence each other,

the presence and extent of this phenomenon have not been rigorously studied and, most

importantly, there is no currently available technique able to quantify the amount of such

crosstalk. In order to better describe the problem, let us focus momentarily on the sim-

plest pathway analysis approach, the over-representation analysis (ORA) already described

in Section 2.4.1. Let us consider the Non-small-cell lung cancer (NSCLC) pathway, that

contains 54 genes. Given that ORA needs a “reference”, we will assume to use an array with

3000 genes. Let us also assume that we are working with an experiment where 50 genes

are found to be DE according to some criteria, 5 of which happen to belong to the NSCLC

pathway. The ORA analysis, in the form of Fisher’s exact test, yields a p-value of 0.00189,

indicating that the pathway is significant in the given condition. Now let us also consider

the VEGF signaling pathway (VEGF). This pathway contains 74 genes of which 26 are also

on the NSLC pathway. These 26 common genes effectively “couple” the p-values of the two

pathways as follows. If none of the 5 genes found to be DE on NSLC belong to VEGF, and

if this pathway does not have any DE genes of its own, this pathway will have zero DE genes

yielding a p-value of 1. However, if for instance 3 of the 5 DE genes are in common between
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NSLC and VEGF, the p-value for VEGF will go down to 0.1276, not yet significant but much

lower then before. Finally, if all 5 DE genes from NSLC happen to be among the genes in

common with VEGF, the p-value for VEGF becomes 0.00748 which is now significant. Even

though VEGF has been reported being involved in oncogenic processes [97], its role in other

conditions such as intense exercise is well documented [80, 4, 36]. In a situation in which the

VEGF pathway is highly impacted, for example in a condition such as exercise after a long

period of inactivity, the coupling of those two pathways could possibly result in a situation

in which the NSLC pathway shows as significantly impacted, therefore resulting as a false

positive.

Clearly, the more common genes there are between two pathways, the higher the chance

that the more DE genes will fall in the common set, and the tighter the coupling between

their p-values will be. At one extreme, two pathways that contain the same set of genes

(but perhaps a different layout describing different phenomena) will have a perfect coupling,

yielding exactly the same p-values in all cases. At the other extreme, two pathways that

have no genes in common will be completely uncoupled.

Given this, it is no surprise when analyzing many experiments, existing methods report

as significant pathways that have little to do with the phenotype investigated (false positives

- FPs), while pathways that are expected to be impacted are ranked lower and sometimes

do not even reach the threshold of significance (false negatives - FNs).

Here, we show that all three major categories of pathway analysis methods (enrichment

analysis, functional class scoring, and impact analysis) are severely influenced by crosstalk

phenomena. Using real pathways and data, we show that in some cases pathways with

significant p-values are not biologically meaningful, and that some biologically meaningful

pathways with non-significant p-values become statistically significant when the crosstalk

effects of other pathways are removed.
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4.1 Crosstalk detection

In order to demonstrate the existence and assess the extent of crosstalk effects, we con-

ducted a systematic exploration of this phenomenon. Identifying such effects in any number

of specific real experiments would constitute only anecdotal evidence since the true amount

of crosstalk between two given pathways in any given condition is not known. In order to

demonstrate the existence and assess the extent of crosstalk effects, we designed and con-

ducted the following systematic exploration of this phenomenon. We first constructed a

reference set of genes from the union of all genes present on at least one KEGG signaling

pathway (2963 genes at the time). Then, for each pathway Pi, we ran experiments as fol-

lows. We calculated the number ni of DE genes that would make Pi significant at least at

α = 0.01 after a Bonferroni correction for multiple comparison. Henceforth, we will refer to

this pathway as the “bait”. We then used the reference set to pick ni random genes from Pi

and 100−ni genes that are not on Pi, and calculated the Fisher Exact Test significance of all

other “prey” pathways, Pj. This essentially models a situation in which 100 genes are found

to be DE, and these genes are such that the Fisher Exact Test will find the bait pathway Pi

significant at 1% after the correction for multiple comparisons. Since the 100−ni genes that

are not on Pi are randomly chosen among the reference set, no other pathway Pj should have

more genes than expected by chance. Under these circumstances, the research hypothesis

is true for the bait, while the null hypothesis is true for all other pathways. We repeated

this selection 1,000 times for each pathway Pi, and each time we computed the Fisher Exact

Test p-value [109], SPIA (impact analysis) [108], and GSEA [105] p-values for all pathways

from the KEGG database [60]. With these results, we constructed the empirical distribu-

tions of the False Discovery Rate (FDR)-corrected p-values corresponding to each prey Pj.

Under the null hypothesis, the p-values are expected to follow an uniform distribution, and

to be independent between different pathways. In fact, the distributions of the p-values (see

Figure 4.1) are significantly different from the uniform distribution (Kolmogorov-Smirnov

goodness of fit p-values of the order of 10−16 in all cases). The distributions for all three



www.manaraa.com

62

Figure 4.1: The distributions of the p-values obtained from the three analysis methods under the null
hypothesis: Fisher’s Exact Test (left), SPIA (middle), and GSEA (right). All three exhibit a significant
departure from the expected uniform distribution (Kolmogorov-Smirnov p-values of the order of 10−16 in
all cases). Notably, all methods yield a much higher than expected number of pathways with p-values lower
than 0.1, i.e. false positives.

methods are severely skewed towards zero, showing that all methods produce a large number

of false positives.

Furthermore, we observed much stronger crosstalk effects for specific pathway pairs (i, j):

every time one of them is used as a bait, the p-value of the other one is pulled to values

much lower than expected by chance, many times well below the significance threshold. All

crosstalk effects can be represented in a crosstalk matrix (left panel in Figure 4.2). In this

matrix, the elements [i, j] represent the mean of the distribution of p-values for 1,000 random

trials using pathway i as bait and pathway j as prey. This matrix is not symmetrical since

the influence of pathway i on pathway j can be different from the influence of pathway j

on i due to the different sizes of the two pathways and the presence of different numbers

of DE genes in the non-shared portion of each pathway. The matrix shows strong crosstalk

between several pathways (e.g. row 3 and columns 57 through 70).

We hypothesized that this crosstalk is due mostly to the genes that are in common between

pathways. If this were true, we would expect to see a strong crosstalk between pairs of

pathways that have many genes in common and a weak crosstalk between pathways that do

not share any genes. In order to test this hypothesis, we calculated the Jaccard similarity

index between all pairs of signaling pathways from KEGG. The Jaccard index is defined
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Figure 4.2: Pathway crosstalk in the Fisher Exact Test p-values. Left panel: a number of random genes were
chosen from a “bait” pathway i such that its Fisher Exact Test p-value is 0.01. Other genes were chosen
randomly from all other pathways (acting as preys), up to a constant number (n = 100). The elements [i, j]
where i 6= j represent the mean of the distribution of p-values for 1000 random trials using pathway i as
bait and pathway j as prey. The elements [i, i] (on the diagonal) represent the classical Fisher Exact Test
p-value of pathway i. The data show that a considerable number of pathways influence each other through
a “crosstalk” of the p-values. For instance, row 3 of the matrix shows that when pathway 3 is chosen to
be significant, several other pathways (e.g. columns 57 to 70) also tend to be significant (dark shades of
blue represent significant p-values). Right panel: each point represents the average of the p-values of all
the random trials for pairs with the same Jaccard index. The lines represent the fitting of linear and a
quadratic models. Both models show a strong dependence between the p-value crosstalk and the Jaccard
index. Similar results were obtained for GSEA and impact analysis (see Figures 4.3 and 4.4).

as
|Pi

⋂
Pj |

|Pi
⋃
Pj | , and characterizes the overlap between two sets, relatively to the size of their

union. Pathways that share many genes will have a large Jaccard index. The right panel in

Figure 4.2 shows the relationship between the Fisher Exact Test p-values and the Jaccard

index for all pathway pairs.

The data shows a very strong correlation between the two (Pearson correlation index of

0.87), which confirms our hypothesis that the crosstalk can be explained by the presence of

genes that are involved in more than one pathway. Very similar results have been obtained

for FCS analysis (GSEA) and for the impact analysis (SPIA) (see Figures 4.3 and 4.4). The

Pearson correlation between the p-values provided by GSEA and the Jaccard indices of all

KEGG pathways was 0.62, while in the case of SPIA the correlation was 0.83, which confirms

our hypothesis that the crosstalk can be explained by the presence of genes that are involved

in more than one pathway.
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impact analysis

Figure 4.3: Pathway crosstalk in the impact analysis p-values. Left panel: a number of random genes were
chosen from a “bait” pathway i such that its impact analysis p-value is 0.01. Other genes were chosen
randomly from all other pathways (acting as preys), up to a constant number (n = 100). The elements [i, j]
where i 6= j represent the mean of the distribution of p-values for 1000 random trials using pathway i as
bait and pathway j as prey. The elements [i, i] (on the diagonal) represent the impact analysis p-value of
pathway i. The data show that a considerable number of pathways influence each other through a “crosstalk”
of the p-values. Right panel: each point represents the average of the p-values of all the random trials for
pairs with the same Jaccard index. The lines represent the fitting of linear and a quadratic models. Both
models show a strong dependence between the p-value crosstalk and the Jaccard index. Similar results were
obtained for GSEA and the classical ORA (see Figures 4.2 and 4.4).
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GSEA analysis

Figure 4.4: Pathway crosstalk in the GSEA p-values. Left panel: a number of random genes were chosen
from a “bait” pathway i such that its GSEA p-value is 0.01. Other genes were chosen randomly from all other
pathways (acting as preys), up to a constant number (n = 100). The elements [i, j] where i 6= j represent
the mean of the distribution of p-values for 1000 random trials using pathway i as bait and pathway j as
prey. The elements [i, i] (on the diagonal) represent the GSEA p-value of pathway i. The data show that a
considerable number of pathways influence each other through a“crosstalk”of the p-values. Right panel: each
point represents the average of the p-values of all the random trials for pairs with the same Jaccard index.
The lines represent the fitting of linear and a quadratic models. Both models show a strong dependence
between the p-value crosstalk and the Jaccard index. Similar results were obtained for the classical ORA
and impact analysis (see Figures 4.2 and 4.3)
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4.1.1 Fat remodeling in obese mice

In addition to the simulated data, we analyzed an experiment investigating cellular and

metabolic plasticity of white fat tissue (WAT), where the classical over-representation anal-

ysis (ORA) produced a number of false positives, and failed to rank highly pathways that

were known to be involved in the given condition.

In this experiment, the chronic activation of WAT β-adrenergic receptors by certain phys-

iological and pharmacological conditions transforms the tissue into one resembling brown fat,

a thermogenic organ [43, 73, 84]. The dataset was obtained from a microarray analysis of

white fat from mice treated with low dose (0.75 nmol/hr) CL 316,243 (CL) for 0, 3 and 7

days. The top 20 pathways ranked by ORA and their associated FDR-corrected p-values for

the comparison between expression levels of genes at days 3 and 0 are shown in Table 4.1. In

this figure, pathways highlighted in red represent pathways not related with the phenomenon

in analysis, while pathways highlighted in green are those for which we know, with reasonable

confidence, that they are involved in the given phenomenon. The white background indicates

pathways for which we do not have conclusive information on their involvement (or lack of)

with the phenomenon in analysis. The three most significant pathways in the comparison

between days 3 and 0 were Parkinson’s, Alzheimer’s and Huntington’s diseases. The fourth

pathway in the ranked list is Leishmaniasis. The first three pathways describe degenerative

diseases of the central nervous system that have no connection to fat remodeling. Leishma-

niasis describes the signaling involved in a disease spread by the bite of certain species of

sand flies. Clearly, this pathway is also unlikely to give insights about the fat remodeling

phenomenon. While other pathways such as Phagosome [87], PPAR Signaling [43], and Cell

cycle [68], are definitely more related to the phenomenon of fat remodeling, their presence in

the middle of a ranked list dominated by false positives (6 false positives in the 10 pathways

significant at 1%) illustrates how these results do not describe the phenomenon in analysis,

and they cannot be considered reliable.
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rank pathway pval(FDR)

1 Parkinson’s disease 2.0e−06

2 Alzheimer’s disease 3.6e−06

3 Huntington’s disease 3.4e−05

4 Leishmaniasis 0.0003
5 Phagosome 0.0006
6 Cell cycle 0.0011
7 Oocyte meiosis 0.0016
8 Cardiac muscle contraction 0.0016
9 Toll-like receptor 0.0018

10 PPAR signaling pathway 0.0018

11 Chemokine signaling pathway 0.0154
12 Lysosome 0.0211
13 B cell receptor 0.0252
14 Systemic lupus erythematosus 0.0292
15 Compl. and coagulation cascades 0.0342
16 Cytokine-cytokine rec. inter. 0.0346
17 Chagas disease 0.0466

18 Progesterone mediated oocyte maturation 0.0530
19 Fc epsilon RI signaling pathway 0.0548
20 Leukocyte transendothelial migration 0.0548

Table 4.1: The results of the ORA analysis in the fat remodeling experiment for the comparison between
days 3 and 0. All p-values are FDR-corrected. The lines show the significance thresholds: blue - 0.01,
yellow - 0.05. Pathways highlighted in red represent pathways not related with the phenomenon in analysis,
while pathways highlighted in green are those for which we know, with reasonable confidence, that they are
involved in the given phenomenon. The white background indicates pathways for which we do not have
conclusive information on their involvement (or lack of) with the phenomenon in analysis. The top four
pathways are not related to fat remodeling. Although there are a number of pathways that are related to
this phenomenon, the presence of many obvious false positives makes the results difficult to interpret.
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A similar situation can be seen in the comparison between expression levels of genes

at days 7 and 0. The results of the classical ORA are shown in Figure 4.2 (only the top

20 pathways are shown). The only significant pathways at the 5% level are Parkinson’s

disease, Cell Cycle and Huntington’s disease. As discussed, Parkinson’s disease has little to

do with the tissue remodeling phenomenon. The Cell Cycle pathway is likely to be related to

tissue remodeling [68], and p53 Signaling is known to be a central pathway in the response

to cellular stress, including inflammation, and related to processes like cellular senescence

and cell cycle [55], while Hungtinton’s disease is a neurodegenerative condition that results

in movement, thinking and psychiatric disorders. With four false positives in the top five

pathways, the results of the classical ORA are distorted to the point of being useless.

These results might point to the conclusion that either the data are not reliable, or that

the method used for pathway analysis is not able to correctly detect the underlying biolog-

ical phenomenon, or even that the pathways available for the analysis are not representing

correctly any of the processes involved in the phenomenon of fat remodeling. In order to

understand the reason for the presence of so many obvious false positives in the results we

looked at each of the three top pathways Alzheimer’s, Parkinson’s, and Huntington’s. The

sizes in genes of these three pathways are, respectively 155, 111, and 165, considering only

genes that are in the microarray used for the experiment. We then looked at the common

genes among these pathways, and we found that 80 genes are in the intersection between

Alzheimer’s and Parkinson’s, 88 genes are in the intersection between Alzheimer’s and Hunt-

ington’s, and 87 genes are in the intersection between Parkinson’s and Huntington’s. Even

more interesting, 79 genes are in common among the three intersections, showing that the

three pathways share a common module that constitutes 50% of the Alzheimer’s, 71% of the

Parkinson’s, and 47% of the Huntington’s pathway. In other words, this common module

constitutes a significant part of each of the three pathways in analysis. In terms of DE

genes, the situation is even more extreme. The Alzheimer’s pathway contains 32 DE genes,

the Parkinson’s 27, and the Huntington’s 31. However, 26 DE genes are in common between
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rank pathway p(FDR)

1 Parkinson’s disease 7.2e−06

2 Huntington’s disease 4.2e−05

3 Alzheimer’s disease 0.0002
4 Cell cycle 0.0044
5 Cardiac muscle contraction 0.0087

6 p53 signaling pathway 0.0134

7 PPAR signaling pathway 0.0773
8 Gap junction 0.0920
9 Progesterone mediated oocyte maturation 0.0995

10 Oocyte meiosis 0.1327
11 Salivary secretion 0.1442
12 Cell adhesion molecules (CAMs) 0.2390
13 SNARE interactions in vesicular transport 0.2969
14 Prostate cancer 0.3837
15 Vasopressin-regulated water reabsorption 0.5111
16 Arrhythmogenic right ventricular cardiomyopathy 0.5111
17 Hedgehog signaling pathway 0.5174
18 Prion diseases 0.5420
19 Melanogenesis 0.5432
20 Pathways in cancer 0.5432

Table 4.2: The results of the ORA analysis in the fat remodeling experiment for the comparison between
days 7 and 0. All p-values are FDR-corrected. The lines show the significance thresholds: blue - 0.01,
yellow - 0.05. Pathways highlighted in red represent pathways not related with the phenomenon in analysis,
while pathways highlighted in green are those for which we know, with reasonable confidence, that they are
involved in the given phenomenon. The white background indicates pathways for which we do not have
conclusive information on their involvement (or lack of) with the phenomenon in analysis.
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Figure 4.5: Common genes in the Alzheimer’s (light red), Parkinson’s (green), and Huntington’s (blue)
pathways. The left panel shows the intersections the three pathways, while the right panel shows the
intersection among the DE genes belonging to each pathway. The intersection among DE genes indicates
that a common mechanism among the three pathways is responsible for the phenotype, and the ORA is not
able to correctly detect such mechanism, as it does not take into account crosstalk among pathways.

the three pathways, and only 4, 1, and 3 respectively are in only one of the pathways. Sum-

marizing, the intersection of the three pathways at the top of both the lists of significant

pathways contains most of the differentially expressed genes of those pathways. This

situation is represented in Figure 4.5.

This indicates that the intersection itself would be the meaningful biological mechanism

responsible for the phenotype observed, but the inability of ORA to account for overlap

among pathways makes it impossible to identify such phenomenon.

4.2 Identification and correction of crosstalk effects

Recently, we proposed the first approach able to i) detect crosstalk effects when they

exists, ii) correct for them, resulting in a more meaningful ranking among pathways in a

specific biological condition, and iii) identify novel functional modules that can play an

independent role and have different functions than the pathway they are currently located

on. This method allows for a better understanding of individual experiment results, as well

as a more refined definition of the existing signaling pathways for specific phenotypes. This
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method takes as input a set of reference pathways and a list of genes that are DE in the

given condition. The crosstalk analysis is composed of three steps: detection of crosstalk

effects, identification of independent functional modules, and correction. The next sections

describe in details these steps.

4.2.1 Detection of crosstalk effects: the crosstalk matrix

The main issue we are trying to address here is the fact that in the presence of overlapping

pathways (i.e. for all pathways databases available today) crosstalk phenomena increase the

probability of false positives, i.e. increase the number of pathways reported as significant but

that in reality are not interesting (borrowing terminology from Brad Efron, we call pathways

that have lesser biological significance “not interesting” even though they might be statisti-

cally significant with a large enough sample size). To better understand the approach we

are going to present, let us briefly review the classical Fisher Exact Test approach described

above. Figure 4.6a represents the contingency table used for assessing the significance of a

pathway Pi by the classical over-representation (ORA) approach. The table divides genes

as either being in the pathway or not, versus being considered DE or not DE (NDE); ni

represents the number of DE genes on Pi, while n represents the total number of DE genes,

and mi represents the number of NDE genes on Pi while m represents the total number of

NDE genes. It follows that ni +mi = |Pi| represents the number of genes on Pi, while with

n+m we represent the total number of genes.

The reasoning behind the ORA is that if the number of DE genes on a pathway is much

higher than expected by chance, then the pathway is likely to be biologically interesting. In

order to take into account the effect of the overlap on the significance of the two pathways we

consider the effect of the removal of the overlapping part on the significance of the pathways.

This is achieved as follows: let us consider two overlapping pathways Pi and Pj. With the

notation Pi\j we define the set of elements in Pi excluding the intersection with Pj; in the

same way, with the notations ni\j+mi\j we represent the number of genes that are in pathway

Pi but not in pathway Pj, and with ni\j the number of DE genes that are on pathway Pi
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DE NDE Total
Pi ni mi ni +mi

P c
i n− ni m−mi (n+m)− (ni +mi)

Total n m n+m

(a) Standard over-representation approach con-
tingency table; ni + mi and n + m represent, re-
spectively, the number of genes belonging to path-
way Pi and the total number of genes. ni and n
represent, respectively, the number of differentially
expressed genes belonging to pathway Pi and the
total number of DE genes.

DE NDE Total
Pi\j ni\j mi\j ni\j +mi\j
P c
i\j n− ni\j m−mi\j (n+m)− (ni\j +mi\j)

Total n m n+m

(b) Contingency table for over-representation approach
taking in account the overlap between pairs of path-
ways; Pi\j represents the set of elements in Pi excluding
the intersection with Pj ; with the notations ni\j +mi\j
we represent the total number of genes that are in path-
way Pi but not in pathway Pj , and with ni\j the number
of DE genes that are on pathway Pi but not in pathway
Pj .

Figure 4.6: A comparison of the classical over-representation analysis (left) with the crosstalk matrix analysis
proposed here (right).

but not in pathway Pj. We then consider the contingency table shown in Figure 4.6b, whose

bottom margin is identical to that of Figure 4.6a.

With this contingency table, we compute for every pair of pathways [i, j] the p-value of

Pi\j. Since this computation yields an k × k matrix, where k is the number of pathways,

the results are most conveniently represented using a matrix visualized as a heat map of

the negative log p-values, where each cell (i, j) of this matrix characterizes the significance

of pathway Pi when we remove the effect of pathway Pj. The rows and the columns are

ordered by the original p-values of the pathways, which are placed on the diagonal. We will

refer to this matrix as the crosstalk matrix. This matrix is useful for identifying the effects

of crosstalk among pathways.

An example of the crosstalk matrix can be found in Figure 4.7. We will refer to the part

of the matrix above the horizontal significance threshold as the significance strip. The non-

significance strip will be the part below the horizontal significance threshold. The significance

quadrant will be the part of the significance strip to the left of the significance threshold.

Using these terms, we can identify and discuss several interesting phenomena that are not
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Figure 4.7: Example of a crosstalk matrix. On the diagonal we find the classical over-representation analysis,
ordered by p-value. The blue line represents the 0.01 significance level, while the black line represents the
0.05 significance level. The p-values in the matrix have been log-transformed (base 10 log) and the sign of
the result has been inverted. The color of the cell represents the p-value: bright red for p-values close to
zero, bright green for p-values close to 1.

captured by any of the existing pathway analysis methods.

A first interesting case is when a pathway Pi is reported as significant by the classical

analysis, but it loses its significance when the effect of another pathway Pj is removed.

This is represented, in the crosstalk matrix, by a non significant p-value (green square) in

the significance strip. In this case Pi is unlikely to be biologically meaningful, since its

significance is most likely due to a crosstalk from Pj.

A second interesting case is when a pathway Pi that is not significant for the classical

analysis becomes significant when the crosstalk effect of another pathway Pj is removed.

This is represented in the crosstalk matrix by a significant p-value (red square) in the non-
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significant strip. The meaning of this is that pathway Pj was masking the significance of Pi,

indicating that a phenomenon likely to be biologically meaningful is happening in the part

of Pi which is not in common with Pj.

A third and last interesting case is a symmetric (with respect to the diagonal) decrease

in significance of pathways in the significance quadrant. This indicates the presence of

an independent functional sub-module, common to both Pi and Pj, that is responsible for

their significance. Note that the activity of this module is tightly related to the condition

studied.

4.2.2 The maximum impact estimation: an expectation maximization technique
for the assessment of the significance of signaling pathways in presence of
crosstalk

The crosstalk matrix is a useful tool for the interpretation of the effect of crosstalk between

pathways. However, the ultimate goal of the analysis of signaling pathways is to provide a

meaningful ranking among pathways, as well as a p-value quantifying the likelihood that

a certain pathway is involved in the phenomenon in analysis. Here, we developed a cor-

rection method for the ranking of pathways that takes into account the overlaps between

pathways.

The main idea is that if there is no crosstalk, i.e. if each gene contributes to one and

only one pathway, then there is no ambiguity in the ORA significance calculations. In such

a case, if genes in a pathway are over-represented, the pathway is not a false positive caused

by crosstalk. Our approach is therefore to infer an underlying pathway impact matrix where

each gene contributes to one and only one pathway, hence is devoid of crosstalk, and then to

perform the ORA using that impact matrix. Since this underlying pathway impact matrix is

not observed directly, it is inferred through likelihood-based methods, and estimated using

the expectation maximization (EM) algorithm. The corrected ranking is computed using

ORA with the underlying pathway impact matrix, shown as follows.
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Y P1 P2 P3 ... Pk
g1 1 0 1 1 · · · 0
g2 1 0 1 0 · · · 0
g3 1 1 0 0 · · · 1
...

...
...

...
...

. . .
...

gn−1 1 0 0 1 · · · 0
gn 1 0 1 0 · · · 0
gn+1 0 0 0 1 · · · 0
gn+2 0 1 0 1 · · · 0

...
...

...
...

...
. . .

...
gn+m−1 0 1 0 0 · · · 0
gn+m 0 0 0 0 · · · 0

Figure 4.8: Example of a DE/membership matrix; the column Y represents the indicator of differential
expression of the various genes (1 for the n DE genes and 0 for the m NDE). Column Pj represents the
membership indicator for pathway j. Row gi describes gene i in terms of its differential expression and its
membership to the various pathways.

Let us consider the DE indicator vector Y , representing the differential expression of

genes, and the membership matrix X describing the membership of each gene in each one

of k pathways P1 . . . Pk. The vector Y is defined as follows:

Yi =

 1 if gi is DE

0 if gi NDE

and each cell Xi,j of the matrix X is defined as follows:

Xij =

 1 if gi belongs to Pj

0 if gi does not belong to Pj

The matrix Y |X obtained by combining the vector Y with the X matrix is shown in the

example in Figure 4.8.

In many analysis methods, the membership matrix X is also interpreted as the impact

matrix : if Xij = 1, then gene gi impacts pathway Pj. In ORA, for example, each gene is

considered to have the same full impact on all pathways the gene belongs to. Crosstalk effects
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result from the fact that a gene can belong to more than one pathway, but in principle, it can

potentially have a different biological impact on each such pathway. Our aim is to identify

the pathway where the biological impact of such a shared gene is maximum. We do so by

estimating the maximum impact pathway using an expectation maximization approach as

described in the following.

Assuming that in a specific biological condition each gene distributes its impact differently

to each pathway, we will consider the pathway to which each gene distributes the greatest

fraction of its impact. We define a binary matrix Z that indicates, for each gene, the pathway

that receives the biggest fraction of that gene’s impact. For each gene gi, the corresponding

row Zi = [Zi1, Zi2, . . . , Zik], where Zij ∈ {0, 1}, will have
∑k

j=1 Zij = 1, i.e. there is only one

column in each row that has a non-zero element. This matrix Z is the unknown underlying

pathway impact matrix referred to above; our goal is to estimate it.

Let us consider one row Zi having a one in an unknown column j and zeros elsewhere.

Since we don’t know j, we compute the probability of each pathway to be the one where

gene gi gives the greatest fraction of its impact. To do this, we assume a non-negative vector

of multinomial probabilities Π = (π1, . . . , πk) with
∑k

j=1 πj = 1, defined by πj = p(Zij =

1|Yi = 1). In other words, given a gene gi that is DE, πj is the probability that gi gives

the greatest fraction of its impact to Pj. Similarly, we also define Θ = (θ1, . . . , θk), where

θj = p(Zij = 1|Yi = 0) for the NDE genes.

Row i of the membership matrix X is denoted by Xi; this vector tells us which pathways

gene i belongs to. Within the context of the probabilistic model described above, each row

Xi can be interpreted as an observation of a gene with a given expression state Y that gives

the greatest fraction of its impact to one of the pathways it belongs to. Therefore, for DE
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genes we have p(Xi = xi|Yi = 1,Π) = Π · x′i. We further assume that the hidden matrix Z

is consistent with the observed X, i.e., Zij can be 1 only when Xij = 1; if Xij = 0 then we

must have Zij = 0 (a gene cannot contribute most to a pathway that it does not belong to).

With this notation:

p(Zi = zi|Xi = xi, Yi = 1,Π) =
p(Zi = zi, Xi = xi|Yi = 1,Π)

p(Xi = xi|Yi = 1,Π)

=
I(zi · x′i = 1) · Π · z′i

Π · x′i
(4.1)

where I(.) is the indicator function. For example, if xi = (11001) and gi is a DE gene, then

the conditional distribution of Zi is given by:

p(Zi = (10000)|Xi = xi, Yi = 1,Π) = π1/(π1 + π2 + π5)

p(Zi = (01000)|Xi = xi, Yi = 1,Π) = π2/(π1 + π2 + π5)

p(Zi = (00100)|Xi = xi, Yi = 1,Π) = 0

p(Zi = (00010)|Xi = xi, Yi = 1,Π) = 0

p(Zi = (00001)|Xi = xi, Yi = 1,Π) = π5/(π1 + π2 + π5) (4.2)

This yields a vector of conditional probabilities ci = (ci1, ci2, ..., cik) for each row Zi of

DE genes, where cij = p(Zij = zij| Xi = xi) as defined above. Once those probabilities are

estimated, we can produce a most likely matrix Z by assigning each gene to the pathway with

the highest probability of receiving the biggest fraction of the impact of the gene. Specifically,

zij = 1 when maxs{cis} = cij; zij = 0 otherwise.
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If there were no crosstalk, each gene would contribute to a single pathway, the matrix X

and the matrix Z would be equal, and they would have only one element equal to 1 in each

row. In this case, πj could be estimated as the number of DE genes belonging to the pathway

divided by the total number of DE genes. The probabilities π and θ could be estimated as

follows:

π̂j =

∑n
i=1 xij
n

(4.3)

θ̂j =

∑n+m
i=n+1 xij

m
(4.4)

In the presence of crosstalk, however, it is not possible to compute Π and Θ directly from

X. A likelihood-based estimation can be used instead.

The log-likelihood of observing the membership matrix X given the gene expression vector

Y is then:

logL =
n+m∑
i=1

log(p(Xi|Yi; π1, π2, π3 . . . πk, θ1, θ2, θ3 . . . θk)) (4.5)

Equation 4.5 is written under the assumption of conditional independence of rows of X;

i.e., under the reasonable assumption that the pathway to which a gene i gives most of its

impact does not depend on the pathway to which another gene j impacts the most. In other

words, the split of the fractions of the impact of a gene does not depend the splits of the

impact of other genes.

This assumption, together with the observation that the DE genes do not depend on



www.manaraa.com

79

θ’s and that the NDE genes do not depend on π’s, allows us to compute the likelihood by

separating the matrix in two sub-matrices: X|Y = 1, representing the sub-matrix of the DE

genes, and X|Y = 0, representing the sub-matrix of the NDE genes:

logL =
n∑
i=1

log(p(Xi|Yi = 1,Π)) +
m+n∑
i=n+1

log(p(Xi|Yi = 0,Θ))

=
n∑
i=1

log(Π ·X ′i) +
m+n∑
i=n+1

log(Θ ·X ′i) (4.6)

In this formula, the (row) vector Π represents the probability of the i − th DE gene to

give the greatest fraction of its impact to a specific pathway, Xi is the i − th row of the

membership matrix X, and X ′i represents its transpose. The dot-product Π · X ′I produces

a scalar representing the probability P (Xi = xi|Y = 1,Π), i.e. the probability of observing

the i-th row of the matrix Xi given the fact that gene i is DE. The same notation has been

used for the dot-product Θ ·X ′i.

In the following, we will only work with the first term to illustrate how to estimate Π. Θ

can be estimated from X|Y = 0 in a similar fashion.

There is no closed form solution for the maximization of Eq. 4.6. However, we can use

the Z matrix as a hidden variable for the estimation of the parameters Π. The log joint

conditional likelihood for the DE part of the matrix can be written as:
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logJLDE = log(p(X,Z|Y = 1,Π))

=
n∑
i=1

log(p(Xi, Zi|Yi = 1,Π))

=
n∑
i=1

log(I(ZDE
i · (XDE

i )′ = 1) · ZDE
i · Π)

=
n∑
i=1

(
log(I(ZDE

i · (XDE
i )′ = 1)) ·

k∑
j=1

zDEi,j · log(πj)

)

=
n∑
i=1

log(
k∑
j=1

zDEi,j · xDEi,j ) +
n∑
i=1

k∑
j=1

log(πj) · zDEi,j (4.7)

We use an expectation maximization (EM) approach to maximize the log likelihood in

Equation 4.5 by maximizing the joint log likelihood defined in Equation 4.7. The EM is an

iterative algorithm that starts with an initial guess for Π, denoted with Π0; each iteration is

a mapping between Πt and Πt+1. The superscript indicates the index of the iteration. We

choose to initialize each element of the vector as follows:

π0
j =

∑n
i=1 xi,j∑n

i=1

∑k
h=1 xi,h

, j ∈ {1 . . . k} (4.8)

This initializes each value πj with the ratio between the number of DE genes in pathway

j and the sum over the matrix X. This initialization is consistent with the model described

in Equation 4.3.

Each iteration of the EM algorithm is composed by two steps: the expectation step and the

maximization step; during the expectation step we compute the expectation of the log joint

conditional likelihood in Equation 4.7 with respect to the posterior p(ZDE
i,j |XDE

i ,Πold):
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E

(
n∑
i=1

log(
k∑
j=1

zDEi,j · xDEi,j ) +
n∑
i=1

k∑
j=1

log(πj) · zDEi,j

)

= E

(
n∑
i=1

log(
k∑
j=1

zDEi,j · xDEi,j )

)
+ E

(
n∑
i=1

k∑
j=1

log(πj) · zDEi,j

)

= E

(
n∑
i=1

k∑
j=1

log(πj) · zDEi,j

)
(4.9)

The term E
(∑n

i=1 log(
∑k

j=1 z
DE
i,j · xDEi,j )

)
is equal to 0 because the term

∑k
j=1 z

DE
i,j · xDEi,j

is equal to 1 for the consistency of Z with X.

The derivation of the non zero term of the expectation is as follows:

E

(
n∑
i=1

k∑
j=1

log(πj) · zDEi,j

)
=

n∑
i=1

k∑
j=1

log(πj) · E
(
zDEi,j |XDE

i,j ,Π
old
)

=
n∑
i=1

k∑
j=1

log(πj) · p(zDEi,j = 1|XDE
i ,Πold)

=
n∑
i=1

k∑
j=1

log(πj) ·
p(zDEi,j , X

DE
i |Πold)∑k

r=1 p(z
DE
i,j , X

DE
i |Πold)

=
n∑
i=1

k∑
j=1

log(πj) ·
xDEi,j · πoldj∑k
r=1 x

DE
i,j · πoldr

(4.10)

The maximization of the expectation with respect to Π, subject to the constraint that∑k
j=1 πj = 1, is obtained with the Lagrange multiplier method as follows:
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d[
∑k

j=1 log(πj)
∑n

i=1

xi,h·πoldh∑k
r=1 xi,r·πoldr

+ λ((
∑k

j=1 πj)− 1)]

dπh
= 0, ∀h ∈ {1 . . . k}∑n

i=1

xi,h·πoldh∑k
r=1 xi,r·πoldr
πh

+ λ = 0, ∀h ∈ {1 . . . k} (4.11)

We can write a systems of equations over all the possible values of h in order to compute

λ.



∑n
i=1

xi,1·π
old
1∑k

r=1 xi,r ·πr

old

π1
+ λ = 0

...

∑n
i=1

xi,k·π
old
k∑k

r=1 xi,r ·π
old
r

πk
+ λ = 0



∑n
i=1

xi,1·πold1∑k
r=1 xi,r·πoldr

= −λ · π1

...

∑n
i=1

xi,k·πoldk∑k
r=1 xi,r·πoldr

= −λ · πk

Summing left and right sides we obtain:

k∑
j=1

n∑
i=1

xi,j · πoldj∑k
r=1 xi,r · πoldr

= −λ
k∑
j=1

πj (4.12)
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Since
∑k

j=1 πj = 1, we can write:

λ = −
k∑
j=1

n∑
i=1

xi,j · πoldj∑k
r=1 xi,r · πoldr

(4.13)

We substitute λ in 4.11 and use an iterative process in which a new π value is calculated

at each step:

∑n
i=1

xi,j ·πoldj∑k
r=1 xi,r·πoldr
πnewh

+ λ = 0,∀h ∈ {1 . . . k}∑n
i=1

xi,j ·πoldj∑k
r=1 xi,r·πoldr
πnewh

−
k∑
j=1

n∑
i=1

xi,j · πoldj∑k
r=1 xi,r · πoldr

= 0,∀h ∈ {1 . . . k}

∑n
i=1

xi,h·πoldh∑k
r=1 xi,r·πoldr
πnewh

=
k∑
j=1

n∑
i=1

xi,j · πoldj∑k
r=1 xi,r · πoldr

,∀h ∈ {1 . . . k}

πnewh =

∑n
i=1

xi,h·πoldh∑k
r=1 xi,r·πoldr∑k

j=1

∑n
i=1

xi,j ·πoldj∑k
r=1 xi,r·πoldr

,∀h ∈ {1 . . . k}

(4.14)

Since the sum over each row is 1, if we invert the order of the summations at the denom-

inator in the last row of Equation 4.14, the value of the denominator becomes n. This, in

other words, means that each value πnewh is the sum of column h over the number of DE

genes.

The algorithm stops when the distance between two consecutive vectors ||Π(t) − Π(t−1)||

is less than the quantity ||Π(1)−Π(0)||
100

, i.e. the distance between the first two vectors divided

by 100. At the end of the steps of the EM algorithm we obtain the matrix C from which we
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can obtain the most probable Z given the condition under study: for each row, we assign the

value 1 to the cell with the highest probability, and 0 to all the others. This is equivalent to

saying that each gene gives its full impact to the pathway with the highest π value.

4.2.3 Independent functional modules detection.

The maximum impact estimation procedure alone is not be able to identify overlapping

modules responsible for the entire significance of other pathways, as in the situations rep-

resented by case 3 in the section describing the crosstalk matrix. In such cases the overlap

should be considered as a separate pathway that is more likely to be biologically meaningful

in the condition under analysis. An additional step is needed in order to correctly deal with

this situation. In this additional step, we extract certain significant overlaps from the list

of pathways, and include them in the list as independent functional modules. An indepen-

dent functional module is a module for which there is evidence of an activity independent

of the pathways it resides in, for the given condition. If an independent module is found in

more than one, possibly unrelated, conditions, this module is considered as a candidate novel

pathway.

A module must satisfy certain conditions in order to be treated as an independent func-

tional module. Let us assume that we are analyzing the overlap between the pathways Pi and

Pj; the first condition is that both pathways are significant (after FDR correction for multi-

ple comparisons) at a certain threshold α. The threshold alpha is the significance threshold

chosen by the user. Typical values for this threshold are 0.01 and 0.05. This condition limits

the search to the significance quadrant of the crosstalk matrix. The second condition is that

the overlap Pi⋂ j itself must be significant at α (after FDR correction). The set of pathways

over which we perform the correction for multiple comparison is the set of original pathways,
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without the two pathways Pi and Pj, and with the inclusion of the pathways Pi\j, Pj\i, and

the module Pi⋂ j. If the original list of pathways contained k pathways, the correction of

the significance of the module is computed on a list that contains k+ 1 pathways. The third

condition is that the sub-pathways obtained by removing the overlap from both original

pathways, indicated by Pi\j and Pj\i, must not be significant at α (after FDR correction).

If we denote with p(P ) the p-value of a generic pathway P , then the conditions can be

summarized as follows:

1. p(Pi) < α, p(Pj) < α

2. p(Pi⋂ j) < α

3. p(Pi\j) ≥ α, p(Pj\i) ≥ α

This pairwise procedure might yield modules that are similar one to each other, for ex-

ample in cases where a module is contained in three or more pathways. That could be solved

with a three-way or n-way search, but we opted for another approach for limiting the num-

ber of new modules. Once all interesting pairwise modules are created, we test for similarity

among modules. The index used for similarity is a modified Jaccard Similarity index mJS

defined as follows:

mJS =
|M1

⋂
M2|

min(|M1|, |M2|)
(4.15)

where M1 and M2 are two modules obtained with the search criteria explained above. We

merge any two modules similarity is greater that a certain threshold st. Once the modules are

merged, the similarity among all the modules (including the newly created one) is computed

again, and the merging procedure is applied again until there are no more modules that can
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be merged.

This newly created modules are removed from all pathways with which they overlap, and

this list of modified pathways is used in the EM procedure. For the datasets analyzed during

this work, we used an st threshold of 0.25.

The value 0.25 for the module selection procedure was selected by calculating all modules

for all datasets we analyzed with different thresholds in the [0, 0.4] range (with a difference

of 0.025 between thresholds). The results are shown in Figure 4.9. As it can be seen in

the figure, the number of modules found in all datasets shows a plateau in the [0.1, 0.375]

range.

It has to be noted that the goal of the module detection process is not to compute the

exact significance of each module, but to estimate the change of the significance of a pair of

pathways when the intersection among them is removed. If this change is big enough, and the

intersection’s significance is comparable to the one of the original pathways, we assume that

the module is the responsible for the significance of the two parent pathways, and we modify

the list of pathways accordingly. When the list of pathways is modified with the addition of

the newly discovered modules, the correction for multiple comparisons is performed on the

new augmented list, estimating the significance of pathways and modules appropriately. If

there are n new modules added to the original list of k pathways, there will be k + n tests

and we correct for k + n multiple comparisons.

After applying the module discovery and the EM approach, the result is a modified

membership matrix that can be used to perform the desired type of analysis. This matrix

now includes three types of pathways: i) original pathways as found in the literature, ii)

novel functional modules that are impacted in the given condition independently from the
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Figure 4.9: Number of modules obtained when changing the threshold distance under which two modules are
considered similar enough to be joined. All datasets showed a plateau in the [0.1, 0.375] range indicating that
the number of modules found does not depend on the choice of the threshold for a wide range of threshold
values.
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pathways they belong to, and iii) the pathways from which such independent modules have

been removed. If the same independent module is found in several conditions, in other

words if this module is active independently from its parent pathways in several different

phenotypes, such a module should be considered a good candidate for a novel pathway.

4.3 Results

We applied our approach to a number of real experiments: the fat remodeling treatment

on obese mice described in Section 4.1.1, an experiment investigating cervical ripening [49],

an experiment investigating the effect of various types of hormones on the endometrium

of healthy, post-menopausal women who underwent hysterectomy [46], and an experiment

investigating gene expression in Alzheimer’s disease [15].

4.3.1 Fat remodeling in obese mice

Comparison between expression levels at day 3 versus day 0.

In order to correct for the crosstalk effects we started by computing the crosstalk matrix

as described in Section 4.2.1. The analysis of the matrix corresponding to the comparison be-

tween day 3 and day 0 illustrates some interesting examples of crosstalk effects. Figure 4.10

represents a detail of the entire matrix. In this figure, the high significance of Parkinson’s

(bright red in row 1, column 1) disappears when the crosstalk due to Alzheimer’s is elimi-

nated (green in row 1, column 2). This indicates that Parkinson’s is a false positive, since its

significance is due exclusively to genes from Alzheimer’s. Furthermore, the high significance

of Alzheimer’s (bright red in row 2, column 2) also disappears when the crosstalk effect of

Parkinson’s is eliminated (green in row 2, column 1). This means that Alzheimer’s signifi-

cance is also due only to the genes in common with Parkinson’s. Essentially, the analysis tells

us that the genes in common between the two pathways are activated independently of ei-
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Figure 4.10: Detail of the crosstalk matrix: comparison between days 3 and 0 in the CL treatment. Areas
marked with a correspond to functional modules that are activated independently from the pathways they
belong to. The cell marked with b corresponds to a specific part of the TLR pathway that is responsible
for the immune response to host genetic material. cells on the diagonal contain the p-values of the classical
ORA, ordered from the most significant one to the least significant one. The cell Pi,j contains the p-value
of pathway Pi after the effect of Pj is removed. The color of each cell represents the p-value: bright red for
p-values close to zero, bright green for p-values close to 1.

ther pathway, which suggests that these genes constitute an independent functional module.

The same phenomenon involves the Cardiac Muscle Contraction and Huntington’s disease

pathways. The same independent functional module is responsible for the changes shown in

areas marked with a in Figure 4.10.

An inspection of these genes and their signaling mechanisms reveals that this module

is composed by genes present in mitochondria, organelles involved in all pathways above.

The fact that this module is strongly activated in this fat remodeling experiment that is not

related to any of the above conditions (Alzheimer’s, Parkinson’s, Huntington’s), suggests that

this should be considered as an independent pathway, dedicated to mitochondrial activity.
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Figure 4.11: Mitochondrial activity pathway. This independent functional module is responsible for the
incorrect identification of the pathways Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and
Cardiac Muscle Contraction by the classical ORA.

Figure 4.11 shows a representation of this new pathway.

In order to investigate the involvement of mitochondria in this condition, epididymal

white fat of control and CL-treated (CL-7d) mice were stained with fluorescent Alexa-555

conjugated to streptavidin and imaged by spinning disc confocal microscopy. Mitochondria

were stained with fluorescent Alexa-555 conjugated to streptavidin, and imaged in whole

mount by confocal microscopy. Figure 4.12 shows a comparison between the control (left)

and CL-treated mice (right). The right panel of this figure shows a massive generation of new

mitochondria after 7 days of treatment, demonstrating in vivo that indeed, the mitochondrial

pathway is central in this experiment.

Another very interesting phenomenon can be observed in Figure 4.10 (circle b). Here,

Toll-like Receptor Signaling (TLR) pathway becomes more significant when the Rig-I Like

Receptor Signaling (RLR) pathway (not significant on its own) is removed. The TLR path-

way is the generic pathway involved in the immune response. The RLR pathway is the

antiviral innate immunity pathway, which includes the mechanisms specifically aimed at the
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Figure 4.12: Epididymal white adipose tissue of a control mouse (left) and a mouse treated with CL for 7
days (right). Treatment with CL for 7 days triggered massive mitochondrial biogenesis, demonstrating in
vivo that indeed, the mitochondrial pathway is central in this experiment. The white bar represents a 20
microns length.

detection of exogenous DNA or RNA. In essence, the crosstalk analysis tells us that in the fat

remodeling experiment, the immune system has been activated but this immune response is

not due to the presence of foreign genetic material. This is exactly what happens here. The

CL treatment causes the death of some white fat cells [43]. In turn, this causes an immune

response in which macrophages are required to dispose of the dead cells [72]. Such subtle

distinctions between various triggers that activated the immune response are not possible

with any classical analysis methods, and it is remarkable that a data analysis method was

able to provide this type of insight.

We then applied the proposed Module Detection and Maximum Impact Estimation de-

scribed in Sections 4.2.2 and 4.2.3 to the data. The corrected p-values obtained after correc-

tion are shown in Figure 4.3.

The ranking based on these crosstalk corrected p-values is greatly improved. The most

significant pathway is now the newly discovered mitochondrial pathway shown in Figure4.11
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rank pathway pval(FDR)

1 Mitochondrial Activity 8.1e−10
2 Phagosome 9.3e−09
3 Cellcycl+Oocyteme 5.8e−08
4 PPAR signaling pathway 0.001
5 Compl. C.C.+Systemic L.E. 0.002

6 * Cytok.-cytok. rec. int. 0.043

7 Toll-like receptor signaling 0.051
8 MAPK signaling pathway 0.115
9 B-cell receptor signaling 0.145

10 Lysosome 0.187
11 Nat. killer cell med. cytotox. 0.187
12 * Cell cycle 0.229
13 Calcium signaling pathway 0.229
14 Cell adhesion molecules 0.258
15 NOD-like receptor signaling 0.258
16 Vasc. smooth muscle contr. 0.424
17 Dilated cardiomyopathy 0.424
18 * Oocyte meiosis 0.432
19 Type I diabetes mellitus 0.432
20 Wnt signaling pathway 0.476

Table 4.3: The results of the ORA analysis in the fat remodeling experiment for the comparison between
days 3 and 0 after (right) correction for crosstalk effects. All p-values are FDR-corrected. The lines show
the significance thresholds: blue - 0.01, yellow - 0.05. Pathways highlighted in red represent pathways
not related with the phenomenon in analysis, while pathways highlighted in green are those for which we
know, with reasonable confidence, that they are involved in the given phenomenon. The white background
indicates pathways for which we do not have conclusive information on their involvement (or lack of) with
the phenomenon in analysis. Pathways ranked 1, 3, and 5 are modules that are functioning independently of
the rest of their pathways in this particular condition. Starred pathways are pathways edited by removing
such modules. Note the lack of any obvious false positive above the significance threshold(s).
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and validated by the in-situ hybridization shown in Figure 4.12. The new p-values also

indicate the Phagosome pathway as one of the pathways related to this phenomenon [87].

Third in the list is an independent module shared by Cell Cycle and Oocyte Meiosis. This

can be thought of as a pathway related to the creation of new cells. Finally, the true

involvement of PPAR signaling pathway in the phenomenon of fat remodeling has been

previously demonstrated [43]. After removing the influence of the mitochondrial crosstalk,

the Parkinson’s, Alzheimer’s, and Huntington’s pathways are not significant anymore (now

ranked 60th, 61st and 54th, respectively). Also, after removing the crosstalk from Phagosome,

Leishmaniasis is not significant anymore (now ranked 62nd).

Comparison between day 7 and day 0.

Similarly to the results obtained for the comparison of expression levels at day 3 versus

day 0, shown in Figure 4.2, the top pathways for the original ORA are Parkinson’s disease,

Alzheimer’s disease, and Huntington’s disease, diseases that have little to do with the tissue

remodeling phenomenon. We computed the crosstalk matrix as described in Section 4.2.1.

Figure 4.13 represents a detail of the entire matrix. The areas marked with a highlight

the same phenomenon present in the matrix corresponding to the comparison between days

3 and 0 of the same experiment. The significance of the pathways Parkinson’s disease,

Huntington’s disease, Alzheimer’s disease, and Cardiac Muscle Contraction is entirely due

to the same mitochondrial activity pathway shown in Figure 4.11. The greatly enhanced

mitochondrial activity in the treated tissue was validated in vivo by in-situ hybridization

(see Fig. 4.12). This shows additional evidence towards the activation of this independent

pathway in this condition.

We then applied the proposed Module Detection and Maximum Impact Estimation de-

scribed in Sections 4.2.2 and 4.2.3 to the data. The ranking obtained with the p-values

corrected for crosstalk is shown in Fig. 4.4 and is greatly improved. The most significant

pathway is the mitochondrial pathway, showing that greatly enhanced mitochondria activ-

ity continues to be the most important difference between the treated and untreated cells
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Figure 4.13: Detail of the crosstalk matrix for the comparison between days 7 and 0 in the same treatment.
The areas marked with a correspond to the Mitochondrial activity pathway shown in Fig. 4.11, the same
pathway that was found to be activated in the dataset associated with the comparison of expression levels
at days 3 and 0.
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even after 7 days. This in turn suggests that the tissue underwent a long-lasting remodeling

phenomenon, in addition to a number of transitory phenomena such as cellular death and

phagocytosis (note that the Phagosome pathway, significantly impacted after 3 days is not

significant anymore after 7 days).

The pathway ranked second is Arrhythmogenic Right Ventricular Cardiomiopathy. While

this pathway was treated here as a false positive due to lack of literature evidence linking it

specifically to tissue remodeling, the module reported by the method includes genes related

to desmosomes, cell structures responsible for certain types of cellular adhesion [65] which

may also be relevant here. Fourth and fifth pathways in rank are, respectively, the PPAR

Signaling pathway and the Cell Adhesion Molecules pathway, both closely related to the

phenomenon of fat remodeling [43].

4.3.2 Cervical ripening

The second data set analyzed was obtained from a recent study that investigated the

transcriptome of uterine cervical ripening in human pregnancy before the onset of labor at

term [49]. The tissue analyzed is the human uterine cervix, the lower part of the uterus

extending from the isthmus of the uterus into the vagina. This tissue is mainly composed of

smooth muscle and extracellular matrix, which consists of collagen, elastin, proteoglycans,

and glycoproteins [69, 115]. The uterine cervix has an essential function in the maintenance

of pregnancy and also in parturition [47, 49, 48]. Cervical ripening is a critical component

of the common terminal pathway of parturition, which includes the extensive remodeling of

the cervix [49]. Disorders of cervical ripening can lead to premature or protracted cervical

change, complicating term (e.g. protracted dilatation or arrest of dilatation) or preterm

gestations (e.g. premature cervical dilation in the second trimester) [49]. The state of

cervical ripening has traditionally been assessed by clinical examination (Bishop score or its

modifications [13]), which includes the digital examination of the cervix for its consistency,

dilatation, effacement, and position. This method has also been used to predict the likelihood

that a patient would go into spontaneous labor.
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rank pathway pval(FDR)

1 Mitochondrial Activity 2.3e−08
2 Arr. right ventr. cardiom. (ARVC) 0.001
3 Cell cycle 0.001

4 PPAR signaling pathway 0.015
5 Cell adhesion molecules (CAMs) 0.019
6 Melanogenesis 0.019

7 Vascular smooth muscle contr. 0.080
8 p53 signaling pathway 0.125
9 Pathways in cancer 0.562

10 SNARE inter. in vesicular transp. 0.562
11 Chagas disease 0.575
12 Long-term potentiation 0.575
13 Phagosome 0.588
14 Vasopressin-reg. water reabs. 0.765
15 Hedgehog signaling pathway 0.765
16 Dorso-ventral axis formation 0.765
17 Intest. imm, netw. for IgA prod. 0.784
18 Wnt signaling pathway 0.984
19 ECM-receptor interaction 0.984
20 Phototransduction 0.984

Table 4.4: The results of the ORA analysis in the fat remodeling experiment for the comparison between
days 7 and 0 after (right) correction for crosstalk effects. All p-values are FDR-corrected. The lines show
the significance thresholds: blue - 0.01, yellow - 0.05. Pathways highlighted in red represent pathways
not related with the phenomenon in analysis, while pathways highlighted in green are those for which we
know, with reasonable confidence, that they are involved in the given phenomenon. The white background
indicates pathways for which we do not have conclusive information on their involvement (or lack of) with
the phenomenon in analysis. Starred pathways are pathways edited by removing such modules. Note the
lack of any obvious false positive above the significance threshold(s). The mitochondrial activity pathway
(validated in vivo) is reported as the most significant pathway even after 7 days, suggesting permanent tissue
remodeling. The Phagosome pathway, significantly impacted after 3 days (see Fig. 4.3) is not significant
anymore after 7 days, consistent with the transitory nature of cellular death and phagocytosis. The four
false positives present in the results of ORA (shown in Figure 4.2) have been removed. The Arrhythmogenic
Right Ventricular Cardiomyopathy pathway is reported as a false positive here, but the DE genes located on
this pathway are involved in cell adhesion, which may be a relevant phenomenon here.
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The goal of this experiment was to examine the relationship between human cervical

ripening and the cervical transcriptome, aiming to improve our understanding of the biology

of cervical ripening at term. This study included pregnant women who underwent elective C-

section at term with an unripe (n=11) or ripe cervix (n=11). Cervical biopsies were obtained

from these women trans-vaginally, from the anterior lip of the uterine cervix following C-

section. Microarray analysis was performed on RNA isolated from these cervical tissue

specimens using Affymetrix GeneChip HGU133Plus2.0 arrays [49].

On this dataset we performed the comparison between gene expression levels from cervical

tissues obtained from women with an unripe (n=11) or ripe cervix (n=11) using the classical

ORA. The results are shown in Fig. 4.14a. Pathways with a p-value smaller than 0.05 after

FDR correction were Focal adhesion, ECM-receptor interaction, Amoebiasis, Cell adhesion

molecules (CAMs), Small cell lung cancer, and Dilated cardiomyopathy.

There is plenty of experimental evidence that biological processes described by the path-

ways Focal Adhesion, ECM-Receptor Interaction, and Cell Adhesion Molecules are related to

cervical ripening. The relation between these pathways and the phenomenon in analysis was

revealed by studies on humans and animals showing the involvement of extra-cellular matrix

metabolism and cell adhesion molecules in cervical ripening [69, 70, 75, 114, 115]. However,

the pathway Amoebiasis describes the biological process of infection from a parasite that

invades the intestinal epithelium. Amoeba infection involves the parasite attachment to the

intestinal mucus layer, followed by disruption and death of host epithelial cells. This process

is completely unrelated to the physiological condition of cervical ripening in term pregnancy.

The same is true for the Small Cell Lung Cancer pathway. Clearly, the top ranked pathways

include some describing complex phenomena that are unrelated to the studied condition.

Also, the significant pathways known to be involved in the process of cervical ripening are

somewhat general pathways describing cellular interactions.

The analysis of the crosstalk matrix shown in Figure 4.16 shows that there is a independent

functional module among the top three pathways in the ranking. This novel module includes
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rank pathway p(fdr)
1 Focal adhesion 1.1e−08
2 ECM-receptor interaction 1.1e−08
3 Amoebiasis 1.2e−06
4 Cell adhesion molecules 0.009
5 Small cell lung cancer 0.015
6 Dilated cardiomyopathy 0.015
7 Viral myocarditis 0.066
8 TGF-beta signaling path. 0.098
9 Prion diseases 0.1555

10 Leukocyte transend. migr. 0.1869
11 Pathways in cancer 0.1869
12 Nat. killer c. med. cytotox. 0.2202
13 Malaria 0.2202
14 Adherens junction 0.3711
15 Arr. right ventr. cardiom. 0.3711
16 Calcium signaling pathway 0.3712
17 Cholinergic synapse 0.6605
18 Vascular smooth muscle

contr.
0.6605

19 Glutamatergic synapse 0.6969
20 HTLV-I infection 0.6969

(a) Top 20 pathways reported by ORA before cor-
rection for crosstalk. Pathways like Amoebiasis and
Small Cell Lung Cancer are not related to this phe-
notype.

rank pathway p(fdr)
1 Integrin mediated ECM Signal. 2.90e−13
2 Cell adhesion molecules 0.0041
3 Dilated cardiomyopathy 0.0041
4 Leukocyte transend. migr. 0.0134
5 TGF-beta signaling pathway 0.2228
6 Endocrine/other f.r. Ca reabs. 0.5791
7 Insulin signaling pathway 0.9182
8 Alzheimer’s disease 1
9 Vascular smooth muscle contr. 1

10 Glutamatergic synapse 1
11 Mineral absorption 1
12 Nat. killer cell mediated cyto-

tox.
1

13 Calcium signaling pathway 1
14 Complement and coag. casc. 1
15 MAPK signaling pathway 1
16 HTLV-I infection 1
17 * * Focal adhesion 1
18 * ECM-receptor interaction 1
19 * * Amoebiasis 1
20 Small cell lung cancer 1

(b) The top 20 pathways reported by ORA after the
crosstalk analysis. After the correction neither Amoe-
biasis nor Small Cell Lung Cancer are significant any-
more. At the same time, Cell Adhesion Molecules
and the Integrin-mediated ECM Signaling have an in-
creased significance. Starred pathways are pathways
edited by removing such module.

Figure 4.14: The results of the ORA for the cervical ripening experiment, before (left) and after (right) the
correction for crosstalk effects. All p-values are FDR-corrected. The lines show the significance thresholds:
blue - 0.01, yellow - 0.05.
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the genes present in the interaction between the cellular transmembrane protein integrin and

three important ECM components, collagen, laminin, and fibronectin. The KEGG pathways

involved in the identification of this pathway are Focal adhesion, ECM-receptor interaction,

and Amoebiasis. Henceforth, we will refer to this pathway, shown in Figure 4.15, as the

Integrin-Mediated ECM Signaling.

Very interestingly, the independent functional module found in this condition is, in fact,

the exact same module found in the hormone treatment experiment described below in Sec-

tion 4.3.3. Interestingly, the KEGG pathways involved in the identification of this functional

module are slightly different between the two phenotypes. While in this phenotype this

module was found from the interaction of Focal adhesion, ECM-receptor interaction and

Amoebiasis, in the hormone treatment the last pathway is replaced by Pathways in Cancer.

The fact that the same module was found to be activated and statistically significant in

two different phenotypes, from the interaction of different sets of canonical pathways, fur-

ther supports the idea that this module describes an independent mechanism and should

therefore be considered as an independent pathway.

Further analysis of the crosstalk matrix shows that the Small Cell Lung Cancer loses

significance when the crosstalk effects of the first three pathways are removed (bright green

loss of significance in first 3 columns of row 5 in Fig. 4.16). This allows us to conclude that it

is a false positive in the classical ORA, with its ORA significance due exclusively to crosstalk

effects.

The ranking of pathways with the p-values corrected for crosstalk by our analysis is shown

in Fig. 4.14b. The first pathway is Integrin-mediated ECM Signaling with an FDR corrected

p-value of 2.9e−13. Cell Adhesion Molecules is now the second in ranking, with an FDR

corrected p-value of 0.004. The false positives in the classical ORA results, Amoebiasis

and Small Cell Lung Cancer, are not significant anymore. The biological significance of the

pathway Dilated Cardiomiopathy may be linked to the fact that 10%-15% of the uterine cervix

is constituted of smooth muscle, and cervical ripening involves alterations of this component.
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Figure 4.15: The novel Integrin-Mediated ECM Signaling. This new module was found to be independently
activated and statistically significant in two different conditions: hormone treatment of post-menopausal
women and cervical ripening in normal pregnancies. Genes shown in red were found to be differentially
expressed in the hormone treatment experiment.
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Figure 4.16: Details of the crosstalk matrix of the cervical ripening experiment. The circle highlights the
evidence for an independent module involving pathways Focal Adhesion, ECM-Receptor Interaction, and
Amoebiasis. The bright green loss of significance of Small-Cell Lung Cancer in columns 1-3 shows that this
pathway was a false positive in the ORA since its significance was due only to the crosstalk from the first 3
pathways.

The last significant pathway at the 5% significance threshold is Leukocyte Transendothelial

Migration. Although human and animal studies [49] have shown that cervical ripening

does not require activation of a typical inflammatory response, and influx of inflammatory

cells into the cervix, the significance of this pathway may reflect the beginning of later

inflammatory events typical of parturition [113, 125].

4.3.3 Estrogen treatment on post-menopausal women

This dataset was produced by an experiment investigating the effect of various types

of hormones on the endometrium of healthy, post-menopausal women who underwent hys-

terectomy [46]. Hormone therapy has been used for the treatment of conditions associated

with menopause [86]. Estrogen replacement therapy has been proven useful against the in-

surgence of collateral effects of the post-menopausal syndrome [17, 50, 123]. However, the

administration of estrogens only has been shown to increase the incidence of endometrial

carcinoma [131]. Therefore, in addition to estrogen, progestins are now given to menopausal

women. Although the risk of endometrial cancer is reduced with the addition of progestins,
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the incidence of other forms of cancer seems to increase when progestin is administered with

estrogen. Initiatives like the Million Women Study (http://www.millionwomenstudy.org/)

and the Women Health Initiative (http://www.nhlbi.nih.gov/whi/) showed that hormone

replacement therapy can increase the risk of lung and breast cancer [23, 25]. In this con-

text, it is interesting to compare the effects of various combinations of hormones at the

transcriptome level [46].

Here, we illustrate our analysis method on the comparison of the expression levels of

genes from samples treated with estrogen (E2) plus medroxyprogesterone acetate (MPA)

versus normal samples. The classical over-representation analysis (ORA) finds the following

pathways significant at the 5% level after FDR correction: ECM receptor interaction, Focal

Adhesion, Pathways in Cancer, Small Cell Lung Cancer, Axon Guidance, Prostate Cancer,

and Jak-STAT Signaling. These results are shown in Figure 4.17a.

The E2+MPA treatment is known to be associated with certain type of cancer including

non-small-cell lung cancer (NSCLC) [24]. Hence, the presence of Pathways in Cancer is

justified, even though its identification as significant does not help understand the specific

mechanism that might be active here. However, the set of significant pathways include small-

cell lung cancer (SCLC) which is not known to be associated with this treatment and fail

to include the NSCLC which has been linked to it [24]. Prostate Cancer is also unlikely to

be related to this specific treatment given that this treatment is administered to women,

rather than men. Like in the previous case, the presence of false positives and the presence

of pathways describing general cellular adhesion processes (focal adhesion and ECM-receptor

interaction) does not help with the understanding of the underlying phenomenon.

The analysis of the cross-talk matrix shows some interesting cases of cross-talk effects.

The first case is an example of a module shared among pathways that is responsible for their

significance. The module in common between the first four pathways in the ranked list de-

scribes the interactions among integrins and collagen, laminin, and fibronectin. The second

case is shown in Fig. 4.18; this detail of the cross-talk matrix shows the row correspond-

http://www.millionwomenstudy.org/
http://www.nhlbi.nih.gov /whi/
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rank pathway p(FDR)
1 ECM-rec. interaction 0.0343
2 Focal adhesion 0.0401
3 Pathways in cancer 0.0401
4 Small cell lung cancer 0.0401
5 Axon guidance 0.0401
6 Prostate cancer 0.0401
7 Jak-STAT signaling pathway 0.0401
8 Progest.-med. oocyte mat. 0.0951
9 Adipocytokine signaling 0.0951

10 Melanoma 0.1208
11 Graft-versus-host disease 0.1291
12 Reg. of actin cytoskeleton 0.2020
13 Aldosterone-reg. Na reabs. 0.2020
14 Oocyte meiosis 0.2168
15 Long-term depression 0.2174
16 mTOR signaling pathway 0.3048
17 Nat. killer cell med. cytotox. 0.3185
18 Vibrio cholerae infection 0.3225
19 SNARE inter. in ves. trans. 0.3699
20 Salivary secretion 0.3699

(a) The top 20 pathways reported by the classical
ORA before correction for crosstalk. The NSCLC,
known to be linked to this treatment [24] is not
identified by the classical method, while the SCLC,
which showed no increase in incidence in the treat-
ment group [24], appears as significant. The sig-
nificance of Pathways in Cancer is consistent with
the putative link between hormone treatments and
higher incidence of some types of cancer but of-
fers no explanation or insight into the underlying
mechanisms.

rank pathway p(FDR)
1 Jak-STAT signaling pathway 5e−09
2 Integrin Mediated ECM Sign. 0.0001
3 Axon guidance 0.0036
4 Vascular sm. muscle contr. 0.0070
5 Aldosterone-reg. Na reabs. 0.0190
6 Adipocytokine signaling 0.0326
7 Nat. killer cell med. cytotox. 0.0344
8 Regulation of actin cytosk. 0.1403
9 Compl. and coag. cascades 0.3413

10 Adherens junction 0.3413
11 SNARE interac. in ves. trans. 0.4842
12 Circadian rhythm - mammal 0.5074
13 Lysosome 0.6552
14 Protein proc. in endopl. ret. 0.7182
15 Vibrio cholerae infection 0.7182
16 * * * Focal adhesion 0.9844
17 Type I diabetes mellitus 1
18 Phagosome 1
19 Huntington’s disease 1
20 Cell cycle 1

(b) The top 20 pathways reported by ORA after
the correction for crosstalk effects. The correction
method removed Pathways in Cancer, SCLC, and
Prostate Cancer from the list of significant path-
ways, increasing the significance of pathways of-
fering more insights such as Jak-STAT signaling
pathway and the new Integrin mediated ECM sig-
naling module. A star before the name of the
pathway means that a module overlapping with
other pathways has been removed from the path-
way.

Figure 4.17: Results of ORA for the estrogen treatment experiment, before (left) and after (right) the
correction for crosstalk effects. All p-values are FDR-corrected. The lines show the significance thresholds:
blue - 0.01, yellow - 0.05.
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ing to the Graft-Versus-Host Disease pathway, which became significant after removal of

associated pathways in multiple cases, including Cell adhesion molecules (CAMs), Leishma-

niasis, Intestinal immune network for IgA production, and Asthma. This happens because

all shared genes between Graft-Versus-Host Disease and the others are all non-DE genes in

this condition. In other words, the DE genes present in Graft-Versus-Host Disease pathway

are specific to the pathway itself. Among those, two particularly interesting ones are PRF1

(perforin 1) and GZMB (granzyme B), both of which play important functional roles in

the natural killer (NK) cell-mediated cytolysis. Consistent with this, the Graft-Versus-Host

Disease pathway is highlighted as being significantly affected by the E2+MPA treatment

in the crosstalk matrix, not due to other interactions but due to genes specific to NK cell-

mediated cytotoxicity. It is remarkable that the results of this type of analysis allowed the

identification of a module, composed by genes belonging to the Graft-Versus-Host Disease

pathway, that is impacted by the hormone treatment, and whose importance was masked

by crosstalk effects with other pathways. This module is relevant in the condition studied,

and treating it separately would provide a more accurate understanding of the underlying

biological phenomenon. However, since the activity of this module was not identified yet in

another condition, nor do we have an independent in vivo validation for this phenotype, we

do not have enough evidence to propose this as an independent pathway at this time.

After applying our the module detection and maximum impact estimation to the dataset,

the results become more helpful in providing insights about the specific underlying mecha-

nisms, as shown in Fig. 4.17b. The first pathway in the ranked list is the Jak-STAT signaling

pathway. Indeed, there is evidence that estrogen treatments impact such pathway through

interaction with the suppressor of cytokine signaling (SOCS2) [71]. The second pathway is a

new pathway, based on the module common between Focal Adhesion, ECM-receptor Inter-

action, and Pathways in Cancer (see the left panel of Fig. 4.18). In this figure, within the

significant quadrant, the symmetric pattern that can be observed between the three pathways

above and Pathways in Cancer indicate the presence of a functional module that responds
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Figure 4.18: Detail of the crosstalk matrix of the estrogen treatment. Left panel: the circle highlights an
example of a common module that is responsible for the significance of an entire group of pathways. The
common module between the pathways ECM-Receptor Interaction, Focal Adhesion, Pathways In Cancer, and
Small Cell Lung Cancer describes the interaction between integrin and collagen, laminin, and fibronectin.
Henceforth, we will refer to this module as the Integrin-mediated ECM signaling pathway (see Fig. 4.15).
Right panel: row corresponding to the pathway Graft-Versus-Host disease. The pathway becomes significant
after the removal of specific pathways, highlighted by the yellow circles. The set of pathways includes
Phagosome, Cell adhesion molecules (CAMs), Leishmaniasis, Intestinal immune network for IgA production,
Systemic Lupus Erithematosus, and Asthma. This indicates a situation in which the genes specific to Graft-
Versus-Host disease are related to the phenomenon in analysis, but their significance is masked by the
presence of crosstalk with other pathways.
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specifically to the hormone treatment. Interestingly, this pathway is the same pathway that

has been shown to be active in a completely different phenotype, the cervical ripening exper-

iment described in Section 4.3.2, and it is the Integrin-Mediated ECM Signaling described

in Fig. 4.15. This pathway is responsible for the significance of the top four pathways in

Fig. 4.17a.

As in the experiment studying cervical ripening, this novel pathway is composed of genes

present in the interaction between the cellular transmembrane protein integrin and three

important ECM components, collagen, laminin, and fibronectin, all of which appeared as

differentially expressed in hormone treatment compared to the control. This is interesting

because the ECM-receptor interaction carries two major functions: the first is to transduce

extracellular signals into the cell for regulation of downstream pathways possibly through

focal adhesion complex, and the second function is to provide structural support to resi-

dent cells; the binding between integrins and collagen, laminin, fibronectin is involved in

the second process. Collagen, a major component of the ECM, forms fibers and attaches

to the cell surface through binding with integrins and fibronectins. Collagen is also present

in the basement membrane with laminin, forming a thin sheet of fibers that underlies the

epithelium [3]. Previous studies have shown that collagen, laminin, and fibronectin partici-

pate in regulating normal development of mammalian mammary tissues [11]. They also play

an important role in cancer progression possibly through ECM remodeling, which leads to

alterations in cell adhesion and tumor cell motility. Consistent with this, enhanced attach-

ment of estrogen-dependent breast cancer cells to the substrate containing ECM components

(collagen I and IV, laminin, fibronectin) was observed with E2 treatment [81]. More evidence

was provided in recent studies using mouse mammary epithelial cells, where the expression

of estrogen receptor alpha (ESR1) was greatly down-regulated by integrin-mediated interac-

tion with collagen-IV and laminin, rather than effects of growth factors such as insulin [88].

Consistently to the previous findings, our method finds that it is the module describing the in-

teraction between integrin and collagen, laminin, and fibronectin (rather than the interaction
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between ligands and their receptors) that is affected specifically by the hormone treatment,

a striking pattern unlikely to be detected by classical over-representation analysis.

A similar pattern was observed between pathways Prostate Cancer and Focal Adhesion,

where the removal of a common submodule caused loss of significance in both pathways.

A close investigation of the Focal Adhesion pathway revealed that its downstream signaling

cascade is regulated by two types of extracellular signals, the ECM components that interact

with integrins, and the growth factors (EGF) that bind to the transmembrane GF receptor

(EGFR). Although a number of DE genes belong to the ECM-Receptor Interaction pathway,

it is the EGFR-induced signaling cascade that is involved in both Prostate cancer and Fo-

cal adhesion, which contains at least two downstream pathways that responded specifically

to the E2+MPA treatment. The first one is the canonical Wnt cascade, during which the

transcription factor beta-catenin gets activated by PI3K-AKT (phosphatidylinositol 3 kinase-

V-Akt murine thymoma viral oncogene homolog) mediated signals, and translocate into the

nucleus for downstream gene regulation [85]. The other is the classical MAPK (Mitogen-

Activated Protein Kinase) pathway, also known as the RAF-MAP2K-MAPK pathway, where

RAF, MAP2K, and MAPK represent the three key serine/threonine-specific protein kinases

present in the cascade [129]. What is also noticeable is that in both cases, while Wnt Sig-

naling pathway and MAPK Signaling pathway both contain sub-pathways other than the

two highlighted here, such as the Wnt5-induced non-canonical Wnt pathway or JNK-p38-

mediated MAPK pathway, only the canonical Wnt cascade and the classical MAPK cascade

are associated with both Prostate Cancer and Focal Adhesion, among which a number of

important genes are DE under the hormone condition, such as PTEN (phosphatase and

tensin homolog), a tumor suppressor that regulates PI3K-AKT signaling pathway, MAPK,

one of the three key protein kinases in the MAPK pathway, and AR (androgen receptor), an

oncogene that plays an important role in MAPK-regulated cell proliferation [45, 92]. Indeed,

estradiol has been shown to activate beta-catenin-mediated Wnt pathway through inhibi-

tion of its partner GSK3 in the rat hippocampus, which releases beta-catenin and allows its
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nuclear translocation [18]. More functional evidence was provided using human colon and

breast cancer cells, in which estrogen receptor (ER) and beta-catenin were found to partici-

pate in the same multi-protein complex, whose interaction gets enhanced with the presence

of estrogen [66]. Since both beta-catenin and ER function as transcription factors, it is

possible that the role of beta-catenin in this complex is to recruit additional co-activators

and chromatin remodeling factors that interact with ER for downstream transcriptional reg-

ulation [66]. Estrogen has been demonstrated to induce cell proliferation through increased

phosphorylation of MAPK cascade, with the mechanistic link between estrogen and MAPK

signaling lying in a partner of ER, the PELP1 (proline, glutamate and leucine rich pro-

tein 1, the modulator of non-genomic activity of estrogen receptor) protein [124]. PELP1

forms a complex with ER and Src family of tyrosine kinases as a scaffold protein, which is

enhanced by E2, further induces activation of MAPK kinases and affects ER-mediated tran-

scription [124]. Consistent with these studies, our method detected a module shared between

Prostate cancer and Focal adhesion, the EGFR-induced canonical Wnt and classical MAPK

cascade, which is responsible for significance of both pathways.

4.3.4 Alzheimer’s disease

We analyzed the data set produced by an experiment investigating the correlation between

gene expression values “with MiniMental Status Examination (MMSE) and neurofibrillary

tangle (NFT)” in subjects with Alzheimer’s disease [15]. Figures 4.19a and 4.19b show

the comparison between the results of the classical ORA and the results of the crosstalk

analysis. At the top of the results of the ORA we find Huntington’s, Alzheimer, Parkin-

son’s, Glutamatergic Synapse, and Arrhythmogenic right ventricular cardiomyopathy. In this

list, Alzheimer’s is the obvious true positive, Huntington’s, Parkinson’s, and Glutamater-

gic Synapse are definitely related to the phenomenon, being involved in neurodegenerative

diseases, while Arrhythmogenic Right Ventricular Cardiomyopathy is clearly a false positive.

The cross-talk analysis reports, as only significant pathway, the module composed by the

intersection between the Alzheimer’s, Parkinson’s, and Huntington’s pathways.
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Rank Title p-value(fdr)
1 Huntington’s disease 3.49 · 10−06

2 Alzheimer’s disease 3.49 · 10−06

3 Parkinson’s disease 3.49 · 10−06

4 Glutamatergic synapse 0.00342933
5 Arrhythm. right ventr. cardiom. 0.0110
6 Circadian rhythm - mammal 0.0995
7 Dopaminergic synapse 0.1322
8 Long-term depression 0.1625
9 Calcium signaling pathway 0.1922
10 Retrograde endocann. signaling 0.1922

(a) Results of the ORA analysis of the GSE1297
data set using KEGG as a reference database. While
related to neurodegenerative diseases, the pathways
Huntington’s and Parkinson’s are not true positives.
The pathway Arrhythmogenic right ventricular car-
diomyopathy is not related to the phenomenon.

Rank Title p-value (fdr)
1 Alzheime+Parkinso+Huntingt 2.44 · 10−07

2 Arrhythm. right ventr. cardiom. 0.1826
3 Glutamatergic synapse 0.3789
4 GABAergic synapse 0.6135
5 ECM-receptor interaction 0.6135
6 Circadian rhythm - mammal 0.6135
7 Gap junction 0.8626
8 Phosphat. signaling system 1
9 Axon guidance 1
10 Serotonergic synapse 1

(b) Results of the crosstalk analysis of the GSE1297
data set using KEGG as a reference database. The
crosstalk analysis is able to extract a functional mod-
ule from the three neurodegenerative disease path-
ways that rank at the top of the ORA list. Genes
found in this module are related to the phenomena of
oxidative phosphorylation and cytochrome oxidase,
highly related to Parkinson’s disease. The pathway
Arrhythmogenic right ventricular cardiomyopathy is
not significant anymore.

Figure 4.19: The results of the ORA analysis in the GSE1297 experiment before (left) and after (right)
correction for crosstalk effects. All p-values are FDR-corrected. The blue line shows the 0.05 significance
threshold.

The DE genes in this module consist are related to the phenomena of oxidative phospho-

rylation and cytochrome oxidation. There is evidence [78, 90, 130] that these mechanisms are

indeed central in Alzheimer’s, and the crosstalk analysis was able to pinpoint the functional

sub-pathway that is responsible for the phenotype, eliminating the false positive present in

the classical analysis list.

4.3.5 Alzheimer’s Disease - Reactome database

In order to show the ability of our method to work with different databases, we analyzed

the dataset produced in [15] against the set of pathways from the Reactome database [57].

The results of the crosstalk analysis are shown in Figures 4.20a (for the ORA) and 4.20b (for

the crosstalk analysis). In this case, the crosstalk analysis compacts the pathways that are at

the top of the ORA result. Those pathways are all related to Alzheimer’s disease [76, 91], and

the crosstalk procedure of building the functional module that is involved in the phenomenon

highlights the close interaction among them. The only false positive of the ORA result is

Regulation of Insulin Secretion. This pathway describes signaling involving pancreatic beta

cells and it is not related to brain cells. This pathway is not significant anymore after the
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Rank Title p-value
(fdr)

1 Tca Cycle/Respiratory Electron Trans-
port

5.22·10−09

2 Respiratory Electron/Atp Synthesis 1.92·10−07

3 Respiratory Electron Transport 2.94·10−05

4 Gaba Synthesis Release Reuptake and
Degradation

2.94·10−05

5 Neurotr. Release Cycle 2.94·10−05

6 Neuronal System 2.94·10−05

7 Glutamate Neurotr. Release Cycle 0.0006
8 Transmission Across Chemical

Synapses
0.0006

9 Formation of Atp by Chemiosm. Coup. 0.0143
10 Regulation of Insulin Secretion 0.0160
11 Norepinephrine Neurotr. Rel. Cycle 0.0160
12 Protein Folding 0.0183
13 Integration of Energy Metabolism 0.0184
14 Prefoldin Mediated Transfer of Sub-

strate to Cct Tric
0.033

15 Darpp 32 Events 0.0374

(a) Results of the ORA analysis of the GSE1297 data
set using Reactome as a reference database. The top
pathways are related to Alzheimer’s Disease. The path-
way Regulation of Insulin Secretion describe the signal-
ing events involving pancreatic beta cells, and it is not
related to brain cells.

Rank Title p-value
(fdr)

1 Respiratory electron/atp synthesis +
Respiratory electron tr. + Tca Cycle

3.85·10−07

2 Gaba Synth. + Glutamate neuron.
+ Neurona system + Neurotrans. +
Transm. Chemical Synapses

0.0001

3 ∗ Tca Cycle and Respiratory Electron
Transport

0.0004

4 Prefoldi + Protein 0.1601
5 Glucose Metabolism 0.7029
6 Hemostasis 1
7 Metabolism of Nucleotides 1
8 Nuclear Signaling by Erbb4 1
9 Biological Oxidations 1
10 * Neuronal System 1
11 Axon Guidance 1
12 Smooth Muscle Contraction 1
13 G Alpha Z Signalling Events 1
14 Mitotic G2 G2 M Phases 1
15 Base Free Sugar Phosphate Removal 1

(b) Results of the crosstalk analysis of the GSE1297
data set using Reactome as a reference database.
The crosstalk analysis groups the pathways related to
Alzheimer’s Disease. The pathway Regulation of Insulin
Secretion is not significant anymore.

Figure 4.20: The results of the ORA analysis in the GSE1297 experiment using Reactome as reference
database, before (left) and after (right) correction for crosstalk effects. All p-values are FDR-corrected. The
blue line shows the significance thresholds of 0.05.

correction for crosstalk. It has to be noted that there is no Alzheimer’s specific pathway in

the Reactome database. However, the crosstalk analysis was able to identify highly related

pathways, providing a more concise result list with no obvious false positives.
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CHAPTER 5 CROSSTALK PACKAGE USER GUIDE

This chapter contains the user guide for the Crosstalk R package for analysis and correc-

tion of crosstalk effects in the analysis of signaling pathways. The analysis implemented in

this package include the detection and quantification of crosstalk effects via computation of

the crosstalk matrix described in Section 4.2.1, the maximum impact estimation described in

Section 4.2.2, and the independent functional module detection procedure described in Sec-

tion 4.2.3. In addition to the method, the package contains the data from the fat remodeling

treatment experiment in obese mice described in [43]. This chapter describes how to format

the main components of crosstalk analysis: the pathway knowledge, the experimental data,

and the pathway analysis method.

5.1 Pathway data

Before any activity is performed, the package must be loaded on the current environ-

ment.

Default pathway data for Homo sapiens and Mus muscles from KEGG are provided with

the package. They can be loaded with the function getPathways by specifying cached as

source. The following example loads the cached pathway data for Mus musculus and shows

the content of the first pathway. Each pathways in the object returned by the function

getPathways is represented by a character vector whose elements are the genes belonging to

the pathway.

> paths <- getPathways(organism='mmu', pathSource='cached')

> paths$pathways[1]

$mmu03008

[1] "102641332" "19384" "19428" "75471" "103573" "97112"

[7] "17724" "17725" "21453" "100862468" "20826" "55989"

[13] "67134" "14113" "237730" "66181" "52530" "68147"

[19] "245474" "73736" "14000" "98956" "195434" "72554"

[25] "213895" "59028" "102614" "117109" "208366" "227522"
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[31] "54364" "66161" "67724" "69961" "74097" "24127"

[37] "24128" "69237" "230737" "237107" "30877" "100019"

[43] "67459" "104444" "434234" "66932" "170722" "245610"

[49] "53319" "83454" "237082" "56488" "67973" "27993"

[55] "102462" "73674" "105372" "21771" "217995" "72515"

[61] "217109" "213773" "216987" "110816" "225348" "269470"

[67] "12995" "13000" "13001" "230082" "224092" "101592"

[73] "74778" "71340" "57815" "67045" "102216272" "16418"

[79] "14791" "66711" "68272" "67619"

The getPahtways textttfunction allows for three alternatives for obtaining the pathway

knowledge, controlled by the parameter pathSource. The first one, i.e. using the value

cached, is shown in the example above, and it loads data already cached in the system. The

second alternative is to use the value spia, in which case the pathways are retrieved from

the SPIA package. Lastly, if the parameter is set to ronto the pathways are retrieved from

the package ROntoTools.

5.2 Experimental data

The experimental data has to be provided as a logical vector whose names are the IDs

of all the genes that were screened in the experiment. Each element of these vectors takes

the value TRUE if the gene was considered interesting (e.g. differentially expressed, or DE)

in the experiment, and FALSE otherwise. In the crosstalk package we included an example

of data from an experiment investigating cellular and metabolic plasticity of white fat tissue

(WAT), where the classical over-representation analysis (ORA) produced a number of false

positives, and failed to rank highly pathways that were known to be involved in the given

condition [43, 29]. The data can be loaded as follows.

> data(micedata)

The first few elements of the data object show the format of the data.

> head(micedata)
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18000 16423 653016 12266 27370 319991

FALSE FALSE FALSE TRUE FALSE FALSE

In this specific example, gene IDs are Entrez gene IDs. It is important to note that the

package does not require a specific type of ID, as long as both IDs in the experimental data

object and in the pathway data are consistent with each other.

5.3 Crosstalk matrix

Once the input data (experimental data and pathway knowledge) is loaded users can

quantify the amount of crosstalk among pairs of pathways by computing the crosstalk matrix

with the functioncrosstalk, as described in Section 4.2.1. The following example code

computes the matrix.

> objectCrossTalk <- crossTalk(dedata = micedata,

+ pathway.data=paths$pathways, path.titles = NULL,

+ shortTitles = TRUE, thresholds=c(0.01, 0.05))

The crosstalk function accepts the following parameters: dedata, containing the list

of genes involved in the experiment, in the format described in the previous section, the

pathway.data parameter, containing the pathway knowledge, an optional argument con-

taining the titles of the pathways, the shortTitles parameter, indicating if pathway titles

should be truncated, and the parameter thresholds, indicating the thresholds used in the

visualization by the ctHeatmap function

The object resulting from the crosstalk function is an object with three elements: the

heatmap object, containing the over-representation p-values and the thresholds for the visu-

alization, the overlap object, containing overlap information among pairs of pathways, and

the crescentGenes object, containing information on genes that belong to a pathway but

not to the intersection with other pathways.

The crosstalk matrix can be plotted using the function ctHeatmap, and the results can be

seen in Fig. 5.1. In this function, the parameter heatmap is a matrix containing the p-values

of pathways obtained by the procedure explained in Section 4.2.1. The two parameters
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threshold1p and threshold5p represent the two thresholds to be plotted on the map. The

parameter title controls the text on top of the map, and the parameter cex.axis.matrix

controls the size of axes labels. This parameter is necessary when printing the heatmap

directly to pdf, as the size of labels differs from the size visualized in R plots.

> ctHeatmap(heatmap = objectCrossTalk$heatmap$map,

+ threshold1p=objectCrossTalk$heatmap$thr1p,

+ threshold5p=objectCrossTalk$heatmap$thr5p,

+ title=paste(c("p-hyper(raw) ", 'ctTest'),

+ collapse=""),

+ cex.axis.matrix=0.3)

5.4 Identification of independent functional modules

The second step of the analysis is the identification of independent functional modules

identification described in Section 4.2.3 performed by the addModules function. The result

of this function is an object with the same format as the pathway data object obtained by

the getPathways function.

> modList <- addModules(pathwayData = paths$pathways, dedata = micedata,

+ pathwayTitles = paths$titles, thresholds = c(1e-6,1e-2), 0.25)

The first parameter of the addModules function is the pathway knowledge. The second

parameter, dedata, represents the experimental data. The third and optional parameter

pathwayTitles contains the name of each pathway. It is represented by a character vector

of the same length of pathwayData. The parameter thresholds contains two thresholds.

Modules are searched within all pathways whose FDR-corrected p-value is below the first

threshold, and then the same process is repeated for pathways whose FDR-corrected p-value

is between the first and the second threshold. If only one threshold is needed, the two values

can be set as the same. Finally, the distanceThreshold parameter contains the similarity

threshold used to merge modules, as explained in Section 4.2.3. Two modules that are closer

(in terms of Jaccard distance) than this parameter are merged together.
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Figure 5.1: Crosstalk matrix. The color of each cell represents the p-value: bright red for p-values close
to zero, bright green for p-values close to 1. Cells on the diagonal contain the p-values of the classical
ORA, ordered from the most significant one to the least significant one. The cell Pi,j contains the p-value
of pathway Pi after the effect of Pj is removed. The horizontal and vertical lines represent the thresholds
chosen.
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The object returned by this function is a list of pathways that includes: i) original path-

ways as passed as input, ii) novel functional modules that are impacted in the given condition

(described by dedata) independently from the pathways they belong to, and iii) the pathways

from which such independent modules have been removed.

5.5 Maximum impact estimation

Lastly, the maximum impact estimation is obtained by using the mieMatrices function

on the data.

> MIEMatrices <- mieMatrices(deData = micedata, pathwayData = modList,

+ xThreshold=.01, stopThreshold=1e-2)

The parameters of the mieMatrices function are the following. deData represents the

experimental data. pathwayData represents the pathway knowledge. stopThreshold is

related to the iterative nature of the maximum impact estimation procedure. At each it-

eration the method computes a vector of probabilities (see Section 4.2.2 for details), and

when the distance between two successive vectors is smaller than stopThreshold the function

stops. The xThreshold parameter controls the pathways for which the maximum impact

estimation is performed. The value of this parameter represents a p-value. Pathways with

FDR-corrected ORA p-value above the threshold are not considered in the maximum impact

estimation.

The result of the mieMatrices function is an object that contains the two maximum

impact matrices. These matrices can be used to compute the crosstalk-corrected over-

representation p-values, with the function computeORA as follows:

> orares <- computeORA(micedata, miematrices = MIEMatrices,

+ pathwaydata = modList)

The format of the result is the following:

> head(orares)

[1] "mmu04260+mmu04932+mmu05010+mmu05012+mmu05016"

[2] "mmu04145+mmu05140+mmu05152"
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[3] "mmu04146"

[4] "mmu04110+mmu04114"

[5] "mmu03320"

[6] "mmu04066"

ID pvalues p.adj.fdr.

module1 mmu04260+mmu04932+mmu05010+mmu05012+mmu05016 5.372178e-10 9.293868e-08

module2 mmu04145+mmu05140+mmu05152 1.527643e-04 1.258026e-02

mmu04146 mmu04146 2.181548e-04 1.258026e-02

module3 mmu04110+mmu04114 3.503756e-04 1.515375e-02

mmu03320 mmu03320 1.358556e-03 4.700603e-02

mmu04066 mmu04066 2.512884e-03 7.245483e-02

de size

module1 26 89

module2 9 29

mmu04146 15 73

module3 9 32

mmu03320 12 61

mmu04066 10 49

The pathways belonging to each module are in the modList object and can be visualized

as follows.

> modList$module1

[1] "mmu04260+mmu04932+mmu05010+mmu05012+mmu05016"

> modList$module2

[1] "mmu04145+mmu05140+mmu05152"

> modList$module3

[1] "mmu04110+mmu04114"

And the DE genes belonging to the module:
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> orares['module1','genes']

[1] 70316 66945 11950 69875 230075 12867 12869 12859 12862 12865

[11] 11947 67680 67273 66043 22272 66142 22273 66445 66576 66594

[21] 66694 67003 78330 227197 226646 66152
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CHAPTER 6 CONCLUSIONS

The identification of biological processes involved with a certain phenotype, such as a

disease or drug treatment, is the goal of the majority of life sciences experiments. Pathway

analysis methods are used to interpret high-throughput biological data to identify such pro-

cesses by incorporating information on biological systems to translate data into biological

knowledge. In this thesis we identified a number of issues affecting existing pathway analysis

methods, and we proposed a number of approaches addressing these issues, allowing for a

better understanding of phenotype mechanisms.

In the first part of the thesis we developed methods to tackle a number of issues with the

most widely pathway analysis method that takes into account the topology of each pathway,

the impact analysis. The first issue is that the current implementation of the impact analysis

does not take into account the statistical significance of individual genes in the analysis.

Without this kind of information, genes with marginal significance are considered as being as

important as genes with high significance values, potentially introducing noise in the analysis.

The first method developed in this thesis allows for incorporation of gene significance in the

analysis, and allows to take full advantage of all the measured gene expression changes,

rather than relying on arbitrarily set thresholds to focus on a subset of genes. In addition to

that, we assessed the performance of a number of methods to detect the efficiency of signal

propagation on signaling pathways. Lastly, we developed an objective method for assessing

individual gene contributions by using a genetic algorithm approach. This method is the

first method that tackles an important issue in pathway analysis: the objective estimation of

the parameters of pathway analysis methods. Most methods for pathway analysis include a

number of parameters that are often set based on trial and error, by analyzing a small number

of datasets, real or simulated. The genetic algorithm framework developed here is the first

to use an extensive collection of real datasets to estimate these parameters. In this work

the framework was used to assess the individual contribution of genes to the pathways they

belong to, and such contributions were used in the impact analysis of signaling pathways, and
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the results show the effectiveness of evolutionary computation techniques in the optimization

of parameters in bioinformatics applications. Also, this framework is general enough to be

applied to all pathway analysis methods.

In the second part of this thesis we addressed an issue related to how overlap among path-

ways affects the results of pathway analysis methods. Pathway analysis methods are used

to interpret high-throughput biological data to identify biological processes involved with

a certain condition, by calculating a p-value that aims to quantify such involvement. We

showed that, although these p-values were thought to be independent, this is not the case,

and that many pathways can considerably affect each other’s p-values through a “crosstalk”

phenomenon. We showed that all three major categories of pathway analysis methods (en-

richment analysis, functional class scoring, and topology-based methods) are severely influ-

enced by crosstalk phenomena. Using real pathways and data, we showed that in some cases

pathways with significant p-values are not biologically meaningful, and that some biologically

meaningful pathways with non-significant p-values become statistically significant when the

crosstalk effects of other pathways are removed. We developed an approach able to detect

and correct crosstalk effects, as well as identify independent functional modules. We assessed

this novel approach on data from five real experiments coming from four phenotypes involv-

ing two species. In all cases, this approach was able to eliminate most false positives, as well

as correctly identify as significant pathways that had been biologically proven to be involved

in the given condition, yet not found to be significant by the classical analysis. We also found

several independent functional modules including a mitochondrial activity module active in

different stages of fat remodeling in mice, and an integrin-mediated ECM signaling found to

be involved in hormone treatment in post-menopausal women and cervical ripening in preg-

nant women. Interesting, the latter module was extracted independently from the crosstalk

interactions of two different groups of pathways, in the two conditions analyzed.

This approach is a departure from the current paradigm that considers the pathways

as static models, independent of the phenotype. In the view proposed here, various spe-



www.manaraa.com

121

cific modules, or sub-pathways, can be dynamically linked to specific conditions. When

such independent functional modules are identified in independent conditions, such as the

integrin-mediated ECM signaling, these modules could be considered as candidate new path-

ways.



www.manaraa.com

122

REFERENCES

[1] Biocyc, pathway/genome databases and pathway tools software.

[2] J. Aach and G. M. Church. Aligning gene expression time series with time warping

algorithms. Bioinformatics, 17(6):495–508, 2001.

[3] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular

Biology of the Cell 4th edition. Garland Science, 2002.

[4] S. Amaral, P. Papanek, and A. Greene. Angiotensin II and VEGF are involved in

angiogenesis induced by short-term exercise training. American Journal Of Physiology-

Heart And Circulatory Physiology, 281(3):H1163–H1169, Sep 2001.

[5] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.

Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver,

A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin,

and G. Sherlock. Gene ontology: tool for the unification of biology. The Gene Ontology

Consortium. Nat Genet, 25(1):25–9, May 2000.

[6] S. Badaloni and M. Falda. Coping with uncertainty in temporal gene expressions using

symbolic representations. In Information Processing and Management of Uncertainty

in Knowledge-Based Systems. Applications, 11–20. Springer, 2010.

[7] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA,

1st edition, 1957.

[8] L. Beltrame, E. Calura, R. R. Popovici, L. Rizzetto, D. R. Guedez, M. Donato, C. Ro-
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The identification of biological processes involved with a certain phenotype, such as a

disease or drug treatment, is the goal of biology experiments. Pathway analysis methods are

used to interpret high-throughput biological data to identify such processes by incorporat-

ing information on biological systems to translate data into biological knowledge. Current

methods share a number of limitations. First, they do not take into account the individual

contribution of each gene to the phenotype in analysis. Second, most of the methods include

parameters of difficult interpretation, often arbitrarily set. Third, the results of all methods

are affected by the fact that pathways are not independent, but communicate through a

phenomenon referred to as crosstalk. Crosstalk effects heavily influence the results of path-

way analysis methods, adding false positives and false negatives, making them difficult to

interpret. We developed methods to address these limitations by i) allowing for incorpora-

tion of individual gene contributions, ii) developing objective methods for the estimation of

parameters of pathway analysis methods, and iii) developing an approach able to detect and

correct for crosstalk effects. We show on real and simulated data that our approaches increase

specificity and sensitivity of pathway analysis, allowing for a more effective identification of

the processes and mechanisms underlying biological phenomena.
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and correction of crosstalk effects in pathway analysis. Genome Research, 23(11):1885–1893,
2013.
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